National Repository of Grey Literature 17 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
Increasing Resolution in Perfusion Magnetic Resonance Imaging Using Compressed Sensing
Mangová, Marie ; Polec,, Jaroslav (referee) ; Šmídl, Václav (referee) ; Rajmic, Pavel (advisor)
Perfusion magnetic resonance imaging is a medical diagnostic method which requires high spatial and temporal resolution simultaneously to capture dynamics of an intravenous contrast agent which is used to perfusion measurement. However, magnetic resonance imaging has physical limits which do not allow to have this resolution simultaneously. This thesis deals with compressed sensing which enables to reconstruct measured data from relatively few acquired samples (below Nyquist rate) while resolution required to perfusion analysis is increased. This aim could be achieved with suitably proposed apriory information about sensed data and model proposal. The reconstruction is then done as an optimization problem. Doctoral thesis brings several new reconstruction models, further proposes method to debias this estimates and examines influence of compressed sensing onto perfusion parameters. Whole thesis is ended with extension of compressed sensing into three-dimensional data. Here, the influence of reconstruction onto perfusion parameters is also described. In summary, the thesis shows that due to compressed sensing, temporal resolution can be increased with the fixed spatial resolution or spatial resolution can be increased with the fixed temporal resolution.
Modelling in perfusion MR imaging
Válková, Hana ; Jiřík, Radovan (referee) ; Kratochvíla, Jiří (advisor)
This thesis deals with the magnetic resonance perfusion data analysis especially DCEMRI. In its introduction the thesis describes the problem of DCE-MRI data aquisition, the necessity of appropriate contrast agent and basic principles of perfusion analysis. The dynamic behavior of contrast agent vascular distribution can be described by arterial input function (AIF). The shape of the curves close to the area of interest is affected by dispersion which is called vascular transport function (VTF) due to the distribution of the contrast agent to the region of interest. Finally the tissue residual function describes system behavior of tissue. The practical part of the diploma thesis is aimed at implementation of model curves AIF, VTF and TRF. Furthermore, a simulation program was created for easy manipulation with introduced models moreover the program is used to perform an estimation of perfusion parameters based on nonblind deconvolution. The method is validated on synthetic data and illustrated on clinical data of the renal cell carcinoma patient.
Compressed sensing in magnetic resonance perfusion imaging.
Mangová, Marie ; Veselý, Vítězslav (referee) ; Rajmic, Pavel (advisor)
Magnetic resonance perfusion imaging is a today's very promising method for medicine diagnosis. This thesis deals with a sparse representation of signals, low-rank matrix recovery and compressed sensing, which allows overcoming present physical limitations of magnetic resonance perfusion imaging. Several models for reconstruction of measured perfusion data is introduced and numerical methods for their software implementation, which is an important part of the thesis, is mentioned. Proposed models are verified on simulated and real perfusion data from magnetic resonance.
Contrast MRI perfusion imaging
Šejnoha, Radim ; Harabiš, Vratislav (referee) ; Krátká, Lucie (advisor)
This semestral thesis is focused on contrast MRI perfusion imaging using method of Dynamic Contrast-Enhanced MRI. It describes basic principles of nuclear magnetic resonance and puls sequences used in DCE MRI. The thesis contains a part dedicated to dynamic contrast imaging of phantom with experimental NMR device located at the Institut of Scientific Instruments of the ASCR in Brno. Results of measurements are analyzed based on models and reached perfusion parameters are discussed.
Deconvolution in perfusion imaging
Líbal, Marek ; Havlíček, Martin (referee) ; Bartoš, Michal (advisor)
The purpose of this study is to introduce the methods of the deconvolution and to programme some of them. For the simulation, the tissue homogeneity model and the model of arterial input fiction were used. These models were engaged as the test procedures with the aim of verify the functionality and utility of the Wiener filter, the Lucy-Richardson algorithm and the Singular value decomposition.
Modelling for ultrasound perfusion imaging
Hracho, Michal ; Šikner, Tomáš (referee) ; Mézl, Martin (advisor)
This thesis deals with the possibilities of determining perfusion parameters of vascular system, using contrast-enhanced ultrasound imaging, which is non-invasive method. Properties of ultrasonography and use of contrast agents are briefly summarized. The methods selected for perfusions analysis were Bolus-tracking¬¬, Burst-replenishment and both of them combined – Bolus&Burst. Parametric models based on these methods were created for modelling an approximation of set perfusion parameters with the use of blind deconvolution.
Phantom model for perfusion imaging
Borovičková, Michaela ; Harabiš, Vratislav (referee) ; Mézl, Martin (advisor)
This work focuses on issues relating to the perfusion analysis. The aim of this work is to perform experimental measurements of the phantom and then evaluate the perfusion curves. This curves are used to himation of perfusion hemodynamic parameters, which indicates important informatik about monitoring area. All processes associated with the designation and evaluation are performed in a program named Matlab. The output of work is a system that provides the reader into the problem of perfusion analysis and allows him to understand and know what is the meaning od analysis, what demands are placed on the evaluation and what is the result of this perfusion analysis.
Increasing Resolution in Perfusion Magnetic Resonance Imaging Using Compressed Sensing
Mangová, Marie ; Polec,, Jaroslav (referee) ; Šmídl, Václav (referee) ; Rajmic, Pavel (advisor)
Perfusion magnetic resonance imaging is a medical diagnostic method which requires high spatial and temporal resolution simultaneously to capture dynamics of an intravenous contrast agent which is used to perfusion measurement. However, magnetic resonance imaging has physical limits which do not allow to have this resolution simultaneously. This thesis deals with compressed sensing which enables to reconstruct measured data from relatively few acquired samples (below Nyquist rate) while resolution required to perfusion analysis is increased. This aim could be achieved with suitably proposed apriory information about sensed data and model proposal. The reconstruction is then done as an optimization problem. Doctoral thesis brings several new reconstruction models, further proposes method to debias this estimates and examines influence of compressed sensing onto perfusion parameters. Whole thesis is ended with extension of compressed sensing into three-dimensional data. Here, the influence of reconstruction onto perfusion parameters is also described. In summary, the thesis shows that due to compressed sensing, temporal resolution can be increased with the fixed spatial resolution or spatial resolution can be increased with the fixed temporal resolution.
Contrast MRI perfusion imaging
Šejnoha, Radim ; Harabiš, Vratislav (referee) ; Krátká, Lucie (advisor)
This semestral thesis is focused on contrast MRI perfusion imaging using method of Dynamic Contrast-Enhanced MRI. It describes basic principles of nuclear magnetic resonance and puls sequences used in DCE MRI. The thesis contains a part dedicated to dynamic contrast imaging of phantom with experimental NMR device located at the Institut of Scientific Instruments of the ASCR in Brno. Results of measurements are analyzed based on models and reached perfusion parameters are discussed.

National Repository of Grey Literature : 17 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.