National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Immunogenicity of induced pluripotent stem cells (iPSC)
Tejklová, Tereza ; Drbal, Karel (advisor) ; Hájková, Michaela (referee)
Ectopic expression of several transcription factors into the somatic cells allows us to artificially dedifferentiate them into induced pluripotent stem cells (iPSC), which show great promise in regenerative medicine and personalized disease modelling, as well as diagnostic tools. Unique attribute of iPSC is the possibility of creating autologous cells for each patient, which could be used for transplantation without fear of immune rejection. However, cells differentiated from iPSC generally display decreased expression of MHC I glycoproteins, which leads to the activation of NK cells of innate immunity. T cells, the part of adaptive immunity, are activated after recognition of antigen peptide or foreign MHC I glycoproteins only in co-operation with costimulatory molecules, which are not usually expressed on iPSC. During dedifferentiation, cells keep the epigenetic profile of the source cell, which can result in the abnormal expression of genes within derived cell lines. Overall immunogenicity depends on the method of iPSC preparation, with respect to genomic stability. Another important factor is the immune environment of transplantation site as well as the tissue damage caused during transplantation. This results in the presentation of danger signals (DAMPs), which are then recognized by pattern...
Immunogenicity of induced pluripotent stem cells (iPSC)
Tejklová, Tereza ; Drbal, Karel (advisor) ; Hájková, Michaela (referee)
Ectopic expression of several transcription factors into the somatic cells allows us to artificially dedifferentiate them into induced pluripotent stem cells (iPSC), which show great promise in regenerative medicine and personalized disease modelling, as well as diagnostic tools. Unique attribute of iPSC is the possibility of creating autologous cells for each patient, which could be used for transplantation without fear of immune rejection. However, cells differentiated from iPSC generally display decreased expression of MHC I glycoproteins, which leads to the activation of NK cells of innate immunity. T cells, the part of adaptive immunity, are activated after recognition of antigen peptide or foreign MHC I glycoproteins only in co-operation with costimulatory molecules, which are not usually expressed on iPSC. During dedifferentiation, cells keep the epigenetic profile of the source cell, which can result in the abnormal expression of genes within derived cell lines. Overall immunogenicity depends on the method of iPSC preparation, with respect to genomic stability. Another important factor is the immune environment of transplantation site as well as the tissue damage caused during transplantation. This results in the presentation of danger signals (DAMPs), which are then recognized by pattern...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.