National Repository of Grey Literature 78 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Study of plasmachemical reduction of corrosive layers on brass
Řádková, Lucie ; Selucká, Alena (referee) ; Krčma, František (advisor)
The main topic of this bachelor thesis is plasmachemical treatment of archeological artifacts, especially plasma chemical treatment of brass corrosion layers. Low-pressure, low-temperature hydrogen plasma is used for this process. Nowadays, the technology is used mainly for iron or silver based materials but even for them the optimal conditions for the corrosion removal are not fully known yet. The knowledge about other metallic materials is fully missing. Two sets of brass samples were prepared in different corrosion atmospheres. The first atmosphere was prepared using saturated vapors of HCl. The samples were in this atmosphere during one month, and corrosion layers were orange-brown. The second set was prepared using ammonium solution, the samples were in this atmosphere for one day, corrosion layers were blue. The generation of capacitively coupled plasma in continuous mode by different supplied power was done. The experiments were carried out at 100 Pa with hydrogen gas flow of 50 sccm. Discharge power was varied in the interval 50 – 200 W and the treatment duration was 70 – 140 min. The optical emission spectroscopy of OH radical was used to find out all changes those have been resulting from plasmachemical reactions. The OH radical integral intensities were observed, they were used to monitoring plasma chemical reduction process. Spectral intensity of spectroscope was in the range 290 – 330 nm. After the plasmachemical treatment, it was very difficult to remove corrosion layers of HCl, but removing of NH3 corrosion layers was easy. It was caused by type of corrosion process (corrosion layers were influenced by time of corrosion process). This bachelor thesis is the start to find out conduct corrosion layers of brass in plasma treatment. In future, plasma treatment could be used to treatment of real archaeological artifacts.
Study of processes during the organosilicone thin films deposition
Flamíková, Kristýna ; Rašková, Zuzana (referee) ; Krčma, František (advisor)
The aim of this work is plasma diagnostic during the deposition of thin films based on organosilicone compounds. Tetravinylsilane (TVS) was used in this study; the optical emission spectroscopy was applied for the diagnostics. The theoretical part of this work gives a basic fundaments of optical emission spectroscopy and brings the procedures for rotational, vibrational, and electron temperature calculations. The deposition process was carried out in pulsed regime with duty cycle 1:4 to 1:499. The pure TVS and TVS containing 10, 40 and 80 % with total gas mixture flow rate of 0.5 sccm were used during the deposition. The hydrogen atomic lines and many rotational lines of molecular hydrogen were identified in the spectra. Besides them, the molecular band of SiH, CH and C2 were observed. The atomic oxygen lines and continuum with a maximum at 550 nm were recorded in the case when oxygen was added. The rotational temperature calculated from 0-0 CH band was in the range 1700 - 2100 K depending on the discharge conditions. The electron temperature of about 1800 K was calculated from hydrogen atomic lines. The experimental results showed the partial plasma composition and some plasma basic characteristics were obtained.
Diagnostic of nitrogen post-discharge by optical emission spectroscopy
Kabeláčová, Kateřina ; Slavíček,, Pavel (referee) ; Mazánková, Věra (advisor)
The aim of this thesis is diagnose post-discharge nitrogen plasma with optical emission spectroscopy. There is long interest of investigated of nitrogen post-discharge plasma and study how to use it in theory as well as in practice. All results were measured with method of optical emission spectroscopy of post-discharge plasma. Discharge was generated by direct-current voltage generator with flowing regime. In this thesis was used for different series of experiments. First experiment was performed with adding water vapour into argon plasma. Measuring was processed at constant current 140 mA, voltage 1.5 V and pressure 1 000 Pa. It was changed flow rate and for each individual flow rate was measured in range 1–25 cm from end of active discharge. Second experiment was with adding nitrogen into argon plasma. Measuring was processed at constant current 140 mA, voltage 1.5 V and pressure 1 000 Pa. We were changing flow rate of nitrogen (0,2 sccm, 0,4 sccm and 0,8 sccm). For each individual flow rate was same experiment with changing distance from active discharge. Third experiment was about adding mercury vapour into nitrogen post-discharge. Measuring was processed at constant current 120 mA, voltage 3.5 V and pressure 1 000 Pa. Measuring was performed with two configuration: with diaphragm and without it. Last experiment was about adding air into argon plasma. Measuring was processed at constant current 140 mA, voltage 1.0 V and pressure 1 000 Pa. Temperature of outer face of tube was measured by thermocouple and infrared thermometer, was measured for last two experiments (argon – air and nitrogen). During experiments with pure nitrogen was visible phenomenon called pink afterglow which is manifested by noticeable increase pink coloration. Optical emission spectrums post-discharge was take at various range of wavelength. At argon with water vapour was 280–600 nm and at adding nitrogen into argon was at range 320–500 nm. At added mercury vapour into nitrogen was 320–600 nm. For experiment argon – air was wavelength range 320–600 nm. From results of experiments were designed dependencies of calculated intensity from measured spectra on distance from active discharge. Also were constructed dependencies of measured temperature on distance from active discharge.
Diagnostics of plasma generated in water solutions and its application
Holíková, Lenka ; Brablec, Antonín (referee) ; Kozáková, Zdenka (advisor)
This thesis deals with the study of parameters of diaphragm discharge in liquids. NaCl solution of different conductivity was used as a conductive medium. Conductivities were adjusted in the range from 220 to 1000 µS cm-1. Two diagnostic methods were used for the study of plasma parameters. The first one was employed in the laboratory of plasma chemistry at Faculty of Chemistry, Brno University of Technology, namely the optical emission spectroscopy. The second method used for plasma diagnostics was the time resolved ICCD camera at the Laboratoire de Physique des Plasmas at the École Polytechnique in Paris. The reactor for the diagnostics by optical emission spectroscopy had the volume of 4 l, and it was made of polycarbonate. PET diaphragm was placed in the barrier separating the cathode and the anode space. Electrodes were made of titanium coated with platinum. Electric power source supplied a constant DC voltage of maximum 5 kV and electric current up to 300 mA. Spectrometer Jobin Yvon TRIAX 550 with CCD detector was used during the experiments in order to measure overview spectra within the range from 200 to 900 nm as well as OH molecular spectra and Hß line spectra. All spectra were scanned in both discharge polarities, i.e. at the cathode and the anode part of reactor. The basic parameters of the discharge plasma were calculated from the spectra, that means rotational and electron temperature and electron density. Another part of experiment consisted of measurements by the ICCD camera iStar 734. Two types of reactors were used. The first one was the same as the reactor for the measurements by the optical emission spectroscopy. The second one was also made of polycarbonate, but the volume of conductive solution was 110 ml, only. HV electrodes made of stainless steel were placed in this reactor. Ceramic diaphragm (Shapal-MTM) was used in both reactors. Diaphragms had different thickness and diameter of holes. ICCD camera acquired photographs with details of processes of the bubbles generation and discharge operation (propagation of plasma channels), depending on solution conductivity, dimensions of the diaphragm, and with respect to the electrode part of the reactor.
Plasmachemical deposition and characterization of hexamethyldiloxane thin layers
Blahová, Lucie ; doc. Mgr. Vít Kudrle. Ph.D. (referee) ; Krčma, František (advisor)
Thin films have been used to modify surface properties of various materials for many years. Plasma Enhanced Chemical Vapor Deposition (PECVD) is one of the possible methods for their preparation and this technique is applied in this work as well. An organosilicone – hexamethyldisiloxane – is used as precursor. Thin films are created on the surface of the substrate using mixture of precursor and oxygen in radiofrequently excited capacitively coupled plasma. The aim of the thesis is to find the optimal deposition conditions for production of transparent thin layers with good barrier capabilities, low oxygen transmission rate especially. Thin film depositions were realized for different compositions of the deposition mixture in continuous and pulsed mode of plasma with varying supplied power and duty cycle values. The deposition process itself was monitored in situ by optical emission spectroscopy. Thin film coatings were analyzed to determine their physical chemical properties (infrared spectroscopy, surface energy) and barrier properties. Using optical emission spectroscopy, important particles were identified in the deposition plasma. Vibrational, rotational and electron temperatures were determined from relative intensities of chosen fragments. Composition of thin films was studied by infrared spectroscopy. The best results of oxygen transmission rate were achieved with layers prepared from deposition mixture with high oxygen content. It was possible to improve barrier properties by performing deposition in pulsed plasma mode with 20–30% duty cycle. In this diploma thesis, optimal deposition conditions of thin films from hexamethyldisiloxane with low oxygen transmission rate were determined. It is possible to use these results in practical applications, such as corrosion inhibitors for archaeological objects. Optionally, they can be used in various industry branches where it is desirable and feasible to prevent oxygen access to the material by deposition of barrier coatings.
Corrosion layers removal in low-pressure plasma
Kujawa, Adam ; Grossmannová, Hana (referee) ; Krčma, František (advisor)
A plasmachemical reduction of corrosion layers on copper was studied. In this case two series of copper samples were prepared and putted in two corrosive environments for one week. The first corrosive environment contained a concentrated nitric acid and the second environment contained a concentrated sulfuric acid. Samples thus prepared were ready to be plasmachemicaly treated. The plasmachemical reductions took place in low-temperature, low-pressure, non-isothermal, high-frequency-inducted hydrogen plasma on the Faculty of Chemistry in University of Technology in Brno. The discharge was generated in continual or pulse mode with changeable pulse ratio. To monitor the reduction process an optical emission spectroscopy was used. The radiation from plasma discharge was measured by an optical spectrometer in the intervals of 1 to 10 minutes. An object of our concern in collected spectrum was the radiation of OH radicals with electromagnetical wavelenght in a range of 305 – 330 nm, and which were produced in a reaction between the hydrogen radicals and the oxygen atoms, contained in the corosion layers. A rotation temperature of plasma was calculated from the spectrums of OH radicals in a dependence of discharge conditions. Gathered findings will give us a better knowing of this conservation technique, that is used for treatment of the corroded surfaces of the archeological artifacts, and will also allow more provident appliance of this method on a copper historical objects.
Study of chemical processes in the gliding arc discharge by optical emission spectroscopy
Maďarová, Štefánia ; Töröková, Lucie (referee) ; Mazánková, Věra (advisor)
The aim of the bachelor thesis is to study the chemical processes of the glow discharge and the sliding arc under the post discharge conditions. The post discharge or afterglow plasma means that the external source of energy is removed from the system and the relaxation process can start. The experiments in bachelor work were performed under the different experimental conditions, for various pressures and gas mixtures. The theoretical part briefly describes term plasma and kinetic processes occurring in plasma generated by electrical discharges. Also there is described the problem of Titan’s atmosphere and possibility of mimic it by the gliding arc discharge. In the experiments, pure nitrogen and a gaseous mixture of nitrogen and methane were used at the same flow rate and different pressures. Optical Emission Spectroscopy (OES) and Gas Chromatography-Mass Spectrometry (GC-MS) were used to analyze chemical reaction products. The glow discharge was generated by a DC voltage source and the measurement was in flow mode. The total gas pressure ranged from 1 000-4 000 Pa at a nitrogen flow rate of 400 ml / min and methane of 0.025 ml / min. The current was in the range of 85-150 mA. In all experimental conditions, a well-known phenomenon called “pink afterglow” was observed. This phenomenon corresponds to the maximum intensity of radiation in a stagnant discharge, exhibiting a significant increase in characteristic pink radiation. The optical emission spectra of the discharging discharge were scanned in the wavelength range 540-640 nm. Three spectral nitrogen systems (the first and the second positive and the first negative ones) have been identified in the measured spectra, they have maximum values in the so-called " "Pink-afterglow". These maxims dropped with increasing pressure and shifted to a later decay time.
Diagnostics of diaphragm discharge in liquids
Dřímalková, Lucie ; Krčma, František (referee) ; Kozáková, Zdenka (advisor)
The main goal of this thesis is the diagnostics of the diaphragm discharge generated in liquids. Although many applications of electric discharge in liquids have been developed during the last years, the exact mechanism of the discharge ignition is not sufficiently known up to now. Based on this reason, this work focused on the investigation of processes before the discharge ignition, breakdown parameters and the discharge itself both in the irregular and stable regime. Using two kinds of inorganic salt solutions the work studied the influence of conductivity and electrolyte kind on the diaphragm discharge and its static current-voltage characteristics. The last task of the work investigated the emission spectra produced by the discharge. The theoretical part of the work presents mechanisms of the discharge generation in gases including the description of particular kinds of known discharges. The base theories of the discharge ignition in liquids are mentioned as well. Experiments were carried out in the reactor divided by the dielectric barrier (diaphragm) with a central pin-hole into two electrode spaces. Diaphragm was made of PET and the pin-hole initial diameter was 0.4 mm. Stainless steel electrodes were installed in the same distance of 2 cm from the barrier and symmetrically with respect to the diaphragm. Time resolved characteristics of current and voltage were recorded using two-channel oscilloscope which detected their output values. Parameters were measured by the constantly increasing DC voltage with a step of 50 V. When the regular discharge was ignited voltage had been gradually decreased. Used solutions contained sodium sulphate or sodium phosphate electrolyte at six different conductivities. Radiation emitted by the discharge was recorded by the spectrometer Jobin Yvon TRIAX 550. Emission spectra were investigated for one electrolyte at two different conductivities. The part with results presents all dependencies that were achieved during the measurements and all obtained data are compared. Recorded time resolved characteristics determine breakdown moment and describe current and voltage in particular parts within the static current-voltage curve. The work compares the influence of conductivity change on current-voltage characteristics as well as the effect of inorganic salt kind. By the conductivity enhancement the measured curve moves towards lower voltage which means that the breakdown voltage is decreased. Changing the inorganic salt the change of voltage related to the creation of bubbles in the diaphragm surroundings is observed. However, the change of electrolyte does not induce any significant change of the breakdown voltage. The last part of the work was focused on the optical emission spectroscopy of the discharge. Typical line system of OH radicals was identified in measured spectra which intensity was not dependent on the salt concentration. The work show particular processes taking place in the diaphragm surroundings when DC voltage is applied on the electrodes in electrolyte up to the diaphragm discharge ignition. Further, results describing the influence of conductivity and electrolyte changes on the processes are presented. The breakdown moment of the discharge and its dependence on the solution conductivity was determined. Optical emission spectroscopy revealed the contents of radiation emitted by the discharge.
Characterization of microwave plasma jet generated in argon-nitrogen mixtures
Truchlá, Darina ; Mazánková, Věra (referee) ; Krčma, František (advisor)
This thesis is concerned with influence of nitrogen admixture to non-thermal microwave plasma jet generated in argon flow at atmospheric pressure. Non-thermal plasma can be used in more biomedical applications such cancer treatment, blood coagulation, sterilization etc. It is necessary to know the changes of plasma composition and its parameters in dependence nitrogen concentration to avoid potentional damages of the treated tissue. Plasma jet was characterized by optical emission spectroscopy along its axis. Electron, vibrational and rotational temperatures were calculated from intensities of the selected spectral lines and bands emitted by particles generated in plasma. The results show increase of the nitric oxide concentration followed by the increase UVC radiation. Temperature of the neutral gas increase too, but not so much and thus jet with nitrogen addition can be still used for the treatment of thermosensitive materials such as human tissue. Study of the sterilization effect of microwave plasma generated in argon-nitrogen mixtures is still under progress. Some of the results obtained during this thesis were included in the paper submitted into Journal of Physics D: Applied Physics.
Characterization and application of microwave plasma on wound healing
Truchlá, Darina ; Němcová, Andrea (referee) ; Krčma, František (advisor)
Non-thermal plasma has a lot of ways for using in nowadays medicine. It presents many useful actions like charged particles, UV light, electric field, radicals, excited atoms and molecules. That complicated chemistry directs to uncountable synergistic interaction between cold plasma and biological systems, involve cells and tissues. This thesis is about effects of cold plasma to wound healing. Two different microwave plasma systems were used for the presented study. The first one was argon plasma torch generated by surface wave using the quartz capillary, the second one was plasma torch with reverse vortex argon flow. Diagnostics of plasma jet by optical emission spectroscopy shown the presence of active particles, which are responsible for a lot of impact of plasma treatment. Concentrations of active particles generated by plasma are dependent on conditions of plasma generation like power of generator and gas flow. For visual evidence of effects on skin caused by active particles was created simulation of skin tissue. Interaction between plasma jet and artificial skin tissue shown that UV light and temperature are not responsible for all observed effects which are noticed after plasma treatment. Some part of experiments was realized in collaboration with Medical University of Sofia in Bulgaria. The theory of positive effect to wound healing was supported by experiments based on treating artificially created wounds on laboratory mice by cold plasma. It was proved, that process of wound healing is significantly shorter after using plasma treatment in comparison with normal wound healing. Plasma treating of wound for 10 seconds in two consequent days seems like more effectively than application of plasma only one day. This Thesis was carried out as a part of international project PLASMABORDER that was supported by European commission under cohesion funds; programme INTEREG SK-CZ under contract No. 304011P709.

National Repository of Grey Literature : 78 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.