National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Study of microviscosity of membrane systems based on ionic amphiphilic pairs
Moslerová, Lenka ; Venerová, Tereza (referee) ; Mravec, Filip (advisor)
In this master ‘s thesis, catanionic vesicles formed by the pseudo-double-chain complex CTA – DS were investigated from the point of view of microviscosity. Samplesand of cationic vesicles contained 23, 43 and 53 mol. % of cholesterol and the double-chain surfactant DODAC. Cationic vesicles were prepared for visual observation, their stability was determined by DLS and the prepared system was further investigated. Microviscosity was determined from fluorescence anisotropy. To study the outer part of the membrane, laurdan fluorescent probes were used whereas diphenylhexatriene was used for the inner part of the membrane. This method has been proven to be suitable because it reflects the conditions of the membrane. Moreover, a 1,3-bispyrenylpropane probe forming intramolecular excimers was used to study the microviscosity in the vesicle bilayer. The dicyanovinyljulolidine (DCVJ) probe was applied in the case of the molecular rotor technique. It has been shown that in the case of the DCVJ probe, the molecular rotor technique is practically unusable, due to the fact that the probe has a low quantum yield at low temperatures. Also, the excimer formation of P3P probes does not lead to the expected results. The cationic vesicles do not seem to support this formation, as they are too closely related. This type of probe can be used for the selected system with some restrictions.
Study of microviscosity of membrane systems based on ionic amphiphilic pairs
Moslerová, Lenka ; Venerová, Tereza (referee) ; Mravec, Filip (advisor)
In this master ‘s thesis, catanionic vesicles formed by the pseudo-double-chain complex CTA – DS were investigated from the point of view of microviscosity. Samplesand of cationic vesicles contained 23, 43 and 53 mol. % of cholesterol and the double-chain surfactant DODAC. Cationic vesicles were prepared for visual observation, their stability was determined by DLS and the prepared system was further investigated. Microviscosity was determined from fluorescence anisotropy. To study the outer part of the membrane, laurdan fluorescent probes were used whereas diphenylhexatriene was used for the inner part of the membrane. This method has been proven to be suitable because it reflects the conditions of the membrane. Moreover, a 1,3-bispyrenylpropane probe forming intramolecular excimers was used to study the microviscosity in the vesicle bilayer. The dicyanovinyljulolidine (DCVJ) probe was applied in the case of the molecular rotor technique. It has been shown that in the case of the DCVJ probe, the molecular rotor technique is practically unusable, due to the fact that the probe has a low quantum yield at low temperatures. Also, the excimer formation of P3P probes does not lead to the expected results. The cationic vesicles do not seem to support this formation, as they are too closely related. This type of probe can be used for the selected system with some restrictions.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.