National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Microfluidic systems in silicon technology
Juránek, Dominik ; Fecko, Peter (referee) ; Gablech, Imrich (advisor)
This thesis is devoted to the topic of microfluidics and the functionality of microfluidic devices when working with blood. It further focuses on the use of microfluidic devices to cut blood cells. The first part of this work is dedicated to the theoretical background of microfluidics, it briefly introduces the history of microfluidic devices and the materials used for their integration, moreover, it talks about the methods used when constructing a microfluidic device in a silicon substrate. Lastly, this section includes a description of blood and its composition and some properties important for working with microfluidic devices. The practical part is concerned with the (manufacturing procedure of) creating a microfluidic and testing of device that can cut red blood cells.
Microfluidic systems in silicon technology
Juránek, Dominik ; Fecko, Peter (referee) ; Gablech, Imrich (advisor)
This thesis is devoted to the topic of microfluidics and the functionality of microfluidic devices when working with blood. It further focuses on the use of microfluidic devices to cut blood cells. The first part of this work is dedicated to the theoretical background of microfluidics, it briefly introduces the history of microfluidic devices and the materials used for their integration, moreover, it talks about the methods used when constructing a microfluidic device in a silicon substrate. Lastly, this section includes a description of blood and its composition and some properties important for working with microfluidic devices. The practical part is concerned with the (manufacturing procedure of) creating a microfluidic and testing of device that can cut red blood cells.
Raman Microspectroscopy in Microfluidic Devices
Peksa, Vlastimil ; Mojzeš, Peter (advisor) ; Šloufová, Ivana (referee)
Miniaturization of devices to study chemical interactions and processes in liquid samples has led to the emergence of microfluidics and construction of lab-on-a-chip systems. Present work was devoted to implementation, development and testing of microfluidic systems with detection by confocal Raman microscopy and surface enhanced Raman scattering under the conditions of training department. Several options of performing standard macroscopic measurements in microscopic scales were explored. A method for measuring thermal stability of biopolymers in microsystems with contactless detection of temperature has been designed and tested. Furthermore, possibilites for studying the SERS effect within microfluidic channels were explored. It was demonstrated that the microfluidic chips provide promising opportunity to study hydrodynamics of liquids at microscopic level and chemical reactions and kinetics.
Raman Microspectroscopy in Microfluidic Devices
Peksa, Vlastimil ; Mojzeš, Peter (advisor) ; Šloufová, Ivana (referee)
Miniaturization of devices to study chemical interactions and processes in liquid samples has led to the emergence of microfluidics and construction of lab-on-a-chip systems. Present work was devoted to implementation, development and testing of microfluidic systems with detection by confocal Raman microscopy and surface enhanced Raman scattering under the conditions of training department. Several options of performing standard macroscopic measurements in microscopic scales were explored. A method for measuring thermal stability of biopolymers in microsystems with contactless detection of temperature has been designed and tested. Furthermore, possibilites for studying the SERS effect within microfluidic channels were explored. It was demonstrated that the microfluidic chips provide promising opportunity to study hydrodynamics of liquids at microscopic level and chemical reactions and kinetics.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.