National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Displaying 3D Graphics in Web Browser
Sychra, Tomáš ; Pečiva, Jan (referee) ; Španěl, Michal (advisor)
This thesis discusses possibilities of accelerated 3D scene displaying in a Web browser. In more detail, it deals with WebGL standard and its use in real applications. An application for visualization of volumetric medical data based on JavaScript, WebGL and Three.js library was designed and implemented. Image data are loaded from Google Drive cloud storage. An important part of the application is 3D visualization of the volumetric data based on volume rendering technique called Ray-casting.
Visualization of 3D data in biomedical applications
Karzel, Michal ; Harabiš, Vratislav (referee) ; Štohanzlová, Petra (advisor)
This thesis describes the basic principle of optical coherence tomography and prepro- cessing of the measured raw data. Preprocessing is focused mainly on noise filtration, removing artifacts, normalization, conversion and compression of raw data. In this way preprocessed data is saved in a *. PFRG file as ”preprocessed fringe data”. Those pre- processed data will be visualised by simply software, which support three methods of visualisation. Volume data represented by voxels. Reconstruction of volume by marching cube algorithm. Cuts through volume along X, Y and Z axis.
Displaying 3D Graphics in Web Browser
Sychra, Tomáš ; Pečiva, Jan (referee) ; Španěl, Michal (advisor)
This thesis discusses possibilities of accelerated 3D scene displaying in a Web browser. In more detail, it deals with WebGL standard and its use in real applications. An application for visualization of volumetric medical data based on JavaScript, WebGL and Three.js library was designed and implemented. Image data are loaded from Google Drive cloud storage. An important part of the application is 3D visualization of the volumetric data based on volume rendering technique called Ray-casting.
Visualization of 3D data in biomedical applications
Karzel, Michal ; Harabiš, Vratislav (referee) ; Štohanzlová, Petra (advisor)
This thesis describes the basic principle of optical coherence tomography and prepro- cessing of the measured raw data. Preprocessing is focused mainly on noise filtration, removing artifacts, normalization, conversion and compression of raw data. In this way preprocessed data is saved in a *. PFRG file as ”preprocessed fringe data”. Those pre- processed data will be visualised by simply software, which support three methods of visualisation. Volume data represented by voxels. Reconstruction of volume by marching cube algorithm. Cuts through volume along X, Y and Z axis.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.