National Repository of Grey Literature 7 records found  Search took 0.01 seconds. 
Quantification of Hydraulic Descaling Mechanisms
Hrabovský, Jozef ; Toman,, Zdeněk (referee) ; Dobeš, Ferdinand (referee) ; Horský, Jaroslav (advisor)
The issue of descaling is an important part of the forging and heat treatment of steel and semi products of steel production. Rising of new information and study of this process can increase efficiency and improve the surface quality after descaling. This thesis is focused on the mechanisms of the high pressure hydraulic descaling qualification and study of the chemical compounds of which the scales grown. To achieve all goals of this work and to get a comprehensive view of descaling process, few experimental measurements and numerical analyses were performed. All experimental measurements were focused on obtaining data about fundamental parameters and effects of the hydraulic descaling. The data obtained from measurements were applied to numerical analyses, which aimed to discover a deeper relation and to confirm the experimental results. This thesis can be divided into two main parts. The first part is devoted to parameters of the water jet study. The main studied characteristics of the high pressure hydraulic water jet were heat transfer coefficient and impact pressure at different modes such as standard or pulsating water jet. Experimentally measured data of these parameters were applied in numerical analyses. The numerical analyses were focused on studying the impact of the water jet parameters on the stresses in the oxide scale layers. A further water jet analysis was focused on the influence of the individual parts of the hydraulic system (such as water chamber or stabilizer) on its characteristics. In this part different types of the water chambers in combination with different types of stabilizers on the impact pressure values were investigated. These measurements were supported by fluid flow analysis through the hydraulic system. The second part of this work was focused on getting mechanical properties of the oxide scales from specimens prepared from standard structural steel and specimens from silicon steel. In this thesis, the influence of various parameters and characteristics was studied on these two types of steel. Mechanical properties of oxide scale structures were carried out by the Small Punch Test method. To obtain the fundamental mechanical properties such as Young´s modulus, yield strength and ultimate strength, material parameters based on the measured data were optimized. The whole work was carried out in order to get valuable and comprehensive results about high pressure hydraulic descaling process and influencing factors as well as about oxide scales themselves.
Development of New Approaches in Descaling in the Continuous Production of Steel using High-Pressure Water Jet
Votavová, Helena ; Hloch,, Sergej (referee) ; Čecho, Ladislav (referee) ; Pohanka, Michal (advisor)
The thesis summarizes general and up-to-date knowledge of descaling during the continuous production of the hot-rolled steel and proposes further streamlining of this process in industrial production. The first chapter of the thesis deals with the origin, structure and physical properties of the scales. The second chapter describes the principles of descaling by using a high pressure flat water jet. The third chapter introduces the principles of the experimental methods and describes the used laboratory equipment. The fourth chapter summarizes the description of the particular experiments and their evaluation, and thus represents the focus of the dissertation. It is divided into six sections which independently solve predefined objectives of the dissertation. The first section focuses on the height and structure development of the scales on 54SiCr6 and HDT580X steels. It has been proven that the height of the formed scales increases with the time and temperature of the oxidation. The layered nature of the scales was verified at the same time. The second section examines the effect of the nozzle stabilizer on the focussing and distribution of the impact pressure of the nozzle. Experiments have shown that increase of 11 % of an average maximum nozzle pressure can be achieved, depending on the type of nozzle and the length of the stabilizer. The third section deals with the analysis of shadowgraphy images of water jet structures of the nozzles. A script was developed for analysis of these shadowgraphy photos by an adaptive thresholding. The findings are correlated using a regression analysis with an average heat transfer coefficient. It has been reported that most of the standard nozzle configurations produced disintegrated stream of little droplets at the height of the rolled surface. The fourth section focuses on the area of water jet overlap, especially the area of the so-called washout, where the impact pressure of one nozzle is reduced by the nozzle stream of the other. The influence of the pressure change and the mutual displacement of the nozzles is investigated. The analysis showed that the change of pressure did not have any effect on the percentage of reduction of the impact pressure in the area of the washout. It has been shown that if the area of the washout is wide the descaling efficiency in this area may be reduced. The fifth section builds on the previous section and focuses directly on the areas of waterjet overlaps. The influence of the change of rotation and pitch of the nozzles is studied. Experiments have shown that small changes in nozzle pitch do not have a significant impact on impact pressure and heat transfer coefficient. The effect of nozzle rotation, on the other hand, was a significant factor for the efficiency and homogeneity of the descaling of the surface. The last section deals with the effect of the rolling speed on the heat transfer coefficient in the descaling process. The regression model has shown that with a higher rolling speed there is a reduction in the average heat transfer coefficient. Conclusion summarizes the results of the dissertation and proposes which findings can be used in the industry to make the descaling process more effective.
EFFECT OF HIGH PRESSURE WATER BEAM PARAMETERS ON QUALITY OF DESCALED SURFACE
Vavrečka, Lukáš ; Toman,, Zdeněk (referee) ; Pavliska,, Martin (referee) ; Horský, Jaroslav (advisor)
This work is focussed on hydraulic descaling of hot surfaces. Hydraulic descaling is a process when layers of oxides are removed from hot steel surfaces during continuous rolling. High pressure water beam is used. Quality of descaled surfaces is important for final quality of rolled product. Insufficient descaling causes drop of final quality, degradation of rolls and lost of yields. High-pressure water beam has two effects on a scale layer. The first effect is mechanical caused by impact pressure. The second one is a relatively intensive thermal shock depending on a set of parameters (water pressure, nozzle type, distance from the surface, inclination angle, speed of product moving). There are a lot of theories about principles of scales removing. Main task of this work is to make it clear which theory is acceptable and which is just ,,theory”. For this purpose mathematical modelling and experimental work were used. In experimental part, three types of experimental measurement were done. First one, measurement of dynamical effect of water beam – impact pressure. Second one, measurement of temperature drop when a product is passing under the nozzle. Measured data (temperatures) from this measurement are evaluated with inverse task and heat transfer coefficient is obtained. And the third experimental measurement is simulation of whole process of descaling. Quality of descaled surfaces is valuated according to amount of remained oxide scales. Data from firs and second experimental measurement are used as boundary conditions for mathematical modelling. For mathematical simulations, FEM (finite element method) system ANSYS was used. Obtained data from experimental measurement were applied on 2D and 3D models of basic steel material with layer of scale. Influence of theses data on final temperature, stress and strain fields were observed.
Development of New Approaches in Descaling in the Continuous Production of Steel using High-Pressure Water Jet
Votavová, Helena ; Hloch,, Sergej (referee) ; Čecho, Ladislav (referee) ; Pohanka, Michal (advisor)
The thesis summarizes general and up-to-date knowledge of descaling during the continuous production of the hot-rolled steel and proposes further streamlining of this process in industrial production. The first chapter of the thesis deals with the origin, structure and physical properties of the scales. The second chapter describes the principles of descaling by using a high pressure flat water jet. The third chapter introduces the principles of the experimental methods and describes the used laboratory equipment. The fourth chapter summarizes the description of the particular experiments and their evaluation, and thus represents the focus of the dissertation. It is divided into six sections which independently solve predefined objectives of the dissertation. The first section focuses on the height and structure development of the scales on 54SiCr6 and HDT580X steels. It has been proven that the height of the formed scales increases with the time and temperature of the oxidation. The layered nature of the scales was verified at the same time. The second section examines the effect of the nozzle stabilizer on the focussing and distribution of the impact pressure of the nozzle. Experiments have shown that increase of 11 % of an average maximum nozzle pressure can be achieved, depending on the type of nozzle and the length of the stabilizer. The third section deals with the analysis of shadowgraphy images of water jet structures of the nozzles. A script was developed for analysis of these shadowgraphy photos by an adaptive thresholding. The findings are correlated using a regression analysis with an average heat transfer coefficient. It has been reported that most of the standard nozzle configurations produced disintegrated stream of little droplets at the height of the rolled surface. The fourth section focuses on the area of water jet overlap, especially the area of the so-called washout, where the impact pressure of one nozzle is reduced by the nozzle stream of the other. The influence of the pressure change and the mutual displacement of the nozzles is investigated. The analysis showed that the change of pressure did not have any effect on the percentage of reduction of the impact pressure in the area of the washout. It has been shown that if the area of the washout is wide the descaling efficiency in this area may be reduced. The fifth section builds on the previous section and focuses directly on the areas of waterjet overlaps. The influence of the change of rotation and pitch of the nozzles is studied. Experiments have shown that small changes in nozzle pitch do not have a significant impact on impact pressure and heat transfer coefficient. The effect of nozzle rotation, on the other hand, was a significant factor for the efficiency and homogeneity of the descaling of the surface. The last section deals with the effect of the rolling speed on the heat transfer coefficient in the descaling process. The regression model has shown that with a higher rolling speed there is a reduction in the average heat transfer coefficient. Conclusion summarizes the results of the dissertation and proposes which findings can be used in the industry to make the descaling process more effective.
Quantification of Hydraulic Descaling Mechanisms
Hrabovský, Jozef ; Toman,, Zdeněk (referee) ; Dobeš, Ferdinand (referee) ; Horský, Jaroslav (advisor)
The issue of descaling is an important part of the forging and heat treatment of steel and semi products of steel production. Rising of new information and study of this process can increase efficiency and improve the surface quality after descaling. This thesis is focused on the mechanisms of the high pressure hydraulic descaling qualification and study of the chemical compounds of which the scales grown. To achieve all goals of this work and to get a comprehensive view of descaling process, few experimental measurements and numerical analyses were performed. All experimental measurements were focused on obtaining data about fundamental parameters and effects of the hydraulic descaling. The data obtained from measurements were applied to numerical analyses, which aimed to discover a deeper relation and to confirm the experimental results. This thesis can be divided into two main parts. The first part is devoted to parameters of the water jet study. The main studied characteristics of the high pressure hydraulic water jet were heat transfer coefficient and impact pressure at different modes such as standard or pulsating water jet. Experimentally measured data of these parameters were applied in numerical analyses. The numerical analyses were focused on studying the impact of the water jet parameters on the stresses in the oxide scale layers. A further water jet analysis was focused on the influence of the individual parts of the hydraulic system (such as water chamber or stabilizer) on its characteristics. In this part different types of the water chambers in combination with different types of stabilizers on the impact pressure values were investigated. These measurements were supported by fluid flow analysis through the hydraulic system. The second part of this work was focused on getting mechanical properties of the oxide scales from specimens prepared from standard structural steel and specimens from silicon steel. In this thesis, the influence of various parameters and characteristics was studied on these two types of steel. Mechanical properties of oxide scale structures were carried out by the Small Punch Test method. To obtain the fundamental mechanical properties such as Young´s modulus, yield strength and ultimate strength, material parameters based on the measured data were optimized. The whole work was carried out in order to get valuable and comprehensive results about high pressure hydraulic descaling process and influencing factors as well as about oxide scales themselves.
Quantification of Hydraulic Descaling Mechanisms
Hrabovský, Jozef ; Horský, Jaroslav (advisor)
The issue of descaling is an important part of the forging and heat treatment of steel and semi products of steel production. Rising of new information and study of this process can increase efficiency and improve the surface quality after descaling. This thesis is focused on the mechanisms of the high pressure hydraulic descaling qualification and study of the chemical compounds of which the scales grown. To achieve all goals of this work and to get a comprehensive view of descaling process, few experimental measurements and numerical analyses were performed. All experimental measurements were focused on obtaining data about fundamental parameters and effects of the hydraulic descaling. The data obtained from measurements were applied to numerical analyses, which aimed to discover a deeper relation and to confirm the experimental results. This thesis can be divided into two main parts. The first part is devoted to parameters of the water jet study. The main studied characteristics of the high pressure hydraulic water jet were heat transfer coefficient and impact pressure at different modes such as standard or pulsating water jet. Experimentally measured data of these parameters were applied in numerical analyses. The numerical analyses were focused on studying the impact of the water jet parameters on the stresses in the oxide scale layers. A further water jet analysis was focused on the influence of the individual parts of the hydraulic system (such as water chamber or stabilizer) on its characteristics. In this part different types of the water chambers in combination with different types of stabilizers on the impact pressure values were investigated. These measurements were supported by fluid flow analysis through the hydraulic system. The second part of this work was focused on getting mechanical properties of the oxide scales from specimens prepared from standard structural steel and specimens from silicon steel. In this thesis, the influence of various parameters and characteristics was studied on these two types of steel. Mechanical properties of oxide scale structures were carried out by the Small Punch Test method. To obtain the fundamental mechanical properties such as Young´s modulus, yield strength and ultimate strength, material parameters based on the measured data were optimized. The whole work was carried out in order to get valuable and comprehensive results about high pressure hydraulic descaling process and influencing factors as well as about oxide scales themselves.
EFFECT OF HIGH PRESSURE WATER BEAM PARAMETERS ON QUALITY OF DESCALED SURFACE
Vavrečka, Lukáš ; Toman,, Zdeněk (referee) ; Pavliska,, Martin (referee) ; Horský, Jaroslav (advisor)
This work is focussed on hydraulic descaling of hot surfaces. Hydraulic descaling is a process when layers of oxides are removed from hot steel surfaces during continuous rolling. High pressure water beam is used. Quality of descaled surfaces is important for final quality of rolled product. Insufficient descaling causes drop of final quality, degradation of rolls and lost of yields. High-pressure water beam has two effects on a scale layer. The first effect is mechanical caused by impact pressure. The second one is a relatively intensive thermal shock depending on a set of parameters (water pressure, nozzle type, distance from the surface, inclination angle, speed of product moving). There are a lot of theories about principles of scales removing. Main task of this work is to make it clear which theory is acceptable and which is just ,,theory”. For this purpose mathematical modelling and experimental work were used. In experimental part, three types of experimental measurement were done. First one, measurement of dynamical effect of water beam – impact pressure. Second one, measurement of temperature drop when a product is passing under the nozzle. Measured data (temperatures) from this measurement are evaluated with inverse task and heat transfer coefficient is obtained. And the third experimental measurement is simulation of whole process of descaling. Quality of descaled surfaces is valuated according to amount of remained oxide scales. Data from firs and second experimental measurement are used as boundary conditions for mathematical modelling. For mathematical simulations, FEM (finite element method) system ANSYS was used. Obtained data from experimental measurement were applied on 2D and 3D models of basic steel material with layer of scale. Influence of theses data on final temperature, stress and strain fields were observed.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.