National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
Real-Time Rendering of a Scene With Many Pedestrians
Pfudl, Václav ; Milet, Tomáš (referee) ; Herout, Adam (advisor)
The aim of this thesis was to implement a software that would be able to render, simulate and record a scene with walking pedestrians in real-time, with emphasis on rendering level of realism. The output of the application could serve as an input test data for people counting systems or similar systems for video recognition. The problem was divided into three major subproblems: character animation, artificial intelligence for character movement and advanced rendering techniques. The character animation problem is solved by the skeletal animation of the model. To achieve the characters moving in a scene autonomously path finding(A* algorithm) and group behaviors(steering behaviors) were implemented. Realism in a scene is added by implemented methods such as normal-mapping, variance shadow-mapping, deffered rendering, skydome, lens flare effect and screen space ambient occlusion. Optimaliaztion of the rendering was implemented using octree data structure for space partitioning. Rendering stage of a scene can be easily parametrized through implemented GUI. Implemented application provides the user with easy way of setting a scene with walking pedestrians, setting its visualization and to record the result.
Crowd simulation
Řepka, Filip ; Pelikán, Josef (advisor) ; Horáček, Jan (referee)
In recent days, the number of reasons why to be interested in the topic of crowds of agents computer simulation is increasing. The field of activity and use of this element is spreading all the time. Whether public building projects testing, investigation of individual's impact on a crowd or replacing the crowd movie scenes participants by a computer simulated agents, the crowd simulation is well efficient and often needed. The thesis could be taken as a first step to creating of a common framework applicable for a wide range of situations. It stands out from a row of recent systems with a relatively narrow field of application thanks to its commonness.
Co-ordinated Path Finding for a Robot Swarm
Mestek, Jakub ; Barták, Roman (advisor) ; Švancara, Jiří (referee)
The thesis deals with finding of collision free paths for groups of robots from their initial locations to their target locations (Multi-agent Path Finding - MAPF). The target locations are inputted only as a set of locations for each group, a particular assignment of agents to locations is not given. Therefore, it is a group (team, colored) variant of the MAPF problem. As a part of this thesis, an application was developed that enables users to enter an initial and target configuration of robots and to find the shortest possible collision free plans. These plans can be visually simulated and it is possible to generate from them programs executable on Ozobot Evo robots. 1
Smart Traffic Intersection
Škopková, Věra ; Barták, Roman (advisor) ; Forst, Libor (referee)
This thesis is concerned with the problem of planning paths for autonomous cars through a smart traffic intersection. In this thesis, we describe existing concepts for solving this problem and discuss the possibilities of approaching intersection problems theoretically. Then, we choose one specific approach and design a declarative model for solving the problem. We use that model to perform a series of theoretical experiments to test the throughput and the quality of intersection paths described by different graphs. After that, we translate theoretical plans to actions for real robots and run it. In these experiments, we measure the degree of robots desynchronization and performance success of the plans based on the collision rate. We also describe how to improve action translation to achieve better performance than that for real robots following the straightforward plans.
Multi-agent Path Finding on Ozobots
Krasičenko, Ivan ; Barták, Roman (advisor) ; Hric, Jan (referee)
BAKALÁŘSKÁ PRÁCE Ivan Krasičenko Multiagentní hledání cest na Ozobotech Katedra teoretické informatiky a matematické logiky Vedoucí bakalářské práce: prof. RNDr. Roman Barták, Ph.D. Studijní program: Informatika Studijní obor: Programování a softwarové systémy Praha 2018 Prohlašuji, že jsem tuto bakalářskou práci vypracoval(a) samostatně a výhradně s použitím citovaných pramenů, literatury a dalších odborných zdrojů. Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona v platném znění, zejména skutečnost, že Univerzita Karlova má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle §60 odst. 1 autorského zákona. V ........ dne ............ Podpis autora i Chtěl bych poděkovat rodičům, že mě vždy podporovali. Bohu, že mě v tom nenechavá samotného. Učitelem ze školy za jejich trpělivost a přívětivost. Všem spolužákům a spolubydlícím se kterými jsem měl tu čest trávit čas. ii Název práce: Multiagentní hledání cest na Ozobotech Autor: Ivan Krasičenko Katedra: Katedra teoretické informatiky a matematické logiky Vedoucí bakalářské práce: prof. RNDr. Roman Barták, Ph.D., Katedra teoretické informatiky a matematické logiky Abstrakt: Vytvořeni testovacího simulačního prostředí pro multiagentní hledání cest na Ozobotech....
3D Navigation for Mobile Robots
Škoda, Jan ; Barták, Roman (advisor) ; Obdržálek, David (referee)
We propose a novel 3D navigation system for autonomous vehicle path-planning. The system processes a point-cloud data from an rgb-d camera and creates a 3D occupancy grid with adaptable cell size. Occupied grid cells contain normal distribution characterizing the data measured in the area of the cell. The normal distributions are then used for cell classification, traversability and collision checking. The space of traversable cells is then used for path-planning. The ability to work in three-dimensional space allows the usage of autonomous robots in highly structured environments with multiple levels, uneven surface or various elevated and underground crossings. That is important for the usage of robots in real- world scenarios, in urban areas or for disaster rescue missions. Powered by TCPDF (www.tcpdf.org)
Crowd simulation
Řepka, Filip ; Pelikán, Josef (advisor) ; Horáček, Jan (referee)
In recent days, the number of reasons why to be interested in the topic of crowds of agents computer simulation is increasing. The field of activity and use of this element is spreading all the time. Whether public building projects testing, investigation of individual's impact on a crowd or replacing the crowd movie scenes participants by a computer simulated agents, the crowd simulation is well efficient and often needed. The thesis could be taken as a first step to creating of a common framework applicable for a wide range of situations. It stands out from a row of recent systems with a relatively narrow field of application thanks to its commonness.
Real-Time Rendering of a Scene With Many Pedestrians
Pfudl, Václav ; Milet, Tomáš (referee) ; Herout, Adam (advisor)
The aim of this thesis was to implement a software that would be able to render, simulate and record a scene with walking pedestrians in real-time, with emphasis on rendering level of realism. The output of the application could serve as an input test data for people counting systems or similar systems for video recognition. The problem was divided into three major subproblems: character animation, artificial intelligence for character movement and advanced rendering techniques. The character animation problem is solved by the skeletal animation of the model. To achieve the characters moving in a scene autonomously path finding(A* algorithm) and group behaviors(steering behaviors) were implemented. Realism in a scene is added by implemented methods such as normal-mapping, variance shadow-mapping, deffered rendering, skydome, lens flare effect and screen space ambient occlusion. Optimaliaztion of the rendering was implemented using octree data structure for space partitioning. Rendering stage of a scene can be easily parametrized through implemented GUI. Implemented application provides the user with easy way of setting a scene with walking pedestrians, setting its visualization and to record the result.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.