National Repository of Grey Literature 12 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Numerical modelling and measurement of the magnetic susceptibility in inhomogeneous materials by the NMR technics
Julínek, Michal ; Steinbauer, Miloslav (referee) ; Fiala, Pavel (advisor)
This bachelor work is concerned in magnetic susceptibility of specific object (glass cube filled with clay, with glass sphere in the centre). In the first part determining of magnetic susceptibility of object was carried out. Measuring was conducted on tomograph of ÚPT AV ČR. Method of gradient echo, which allows magnetic susceptibility determining of non-magnetic materials, was used. Distribution of magnetic field within the object was acquired (object was measured with and without sphere), the change of magnetic field (between object with and without sphere) was subsequently determined. In the second part, magnetic field simulation of the same object in the ANSYS software was performed. Calculation was conducted on 3D model by the finite element analysis. Distribution of magnetic field of object was acquired as a result of simulation. Results from simulation were compared with experimental findings.
Numericalanalysis and measurement of the magnetic charakteristics in inhomogeneous materials by the NMR technics
Mrázek, Jiří ; Bartušek, Karel (referee) ; Fiala, Pavel (advisor)
This bachelor thesis is concerned in magnetic susceptibility of specific object (glass cube, with four sticks in the centre). In the first part determining of magnetic susceptibility of object was carried out. Measuring was conducted on tomograph of ÚPT AV ČR. Method of gradient echo, which allows magnetic susceptibility determining of non-magnetic materials, was used. Distribution of magnetic field within the object was acquired (object was measured with and without sticks), the change of magnetic field (between object with and without stick) was subsequently determined. In the second part, magnetic field simulation of the same object in the ANSYS software was performed. Calculation was conducted on 3D model by the finite element analysis. Distribution of magnetic field of object was acquired as a result of simulation. Results from simulation were compared with experimental findings.
MRI Acquisition of Image Sequences for Preclinical Perfusion Imaging
Krátká, Lucie ; Bartoš, Michal (referee) ; Jiřík, Radovan (advisor)
The task of this thesis is to study methods for the acquisition perfusní imaging based on dynamic MR imaging with T1 contrast. It describes methods of measurement of T1 relaxation time and the possibility of evaluating the results. It further describes the phantoms and their use. And it is here mentioned for the dynamic acquisition protocol perfusní imaging. There is also described in detail created a program for automatic control of the NMR system. In the experimental measurements are performed on static and dynamic phantom, are also evaluated perfusion parameters from the Flash sequence.
MRI Acquisition and Preprocessing of Image Sequences for Clinical Perfusion Imaging
Krchňavý, Jan ; Bartoš, Michal (referee) ; Jiřík, Radovan (advisor)
This thesis describes the theory for static and dynamic magnetic-resonance imaging using contrast agents affecting T1 relaxation time. The available acquisition methods in the specified facility of Masaryk Oncological Institute in Brno are described. The sequences for subsequent experimental measurements are selected. The used phantoms are described. Acquisition protocol for measuring is described briefly and the evaluation method for the measured data is suggested. The best acquisition sequence and a method of measurements is chosen influenced by estimation of relaxation time T1, sensitivity and signal to noise ratio. Perfusion analysis is executed and perfusion parameters are calculated. The work was supported by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101).
Contrast enhancement for tissue discrimination and contrast nanoparticle detection by MRI
Bačovský, Jaromír ; Macíček, Ondřej (referee) ; Starčuk, Zenon (advisor)
Magnetic resonance imaging is a routine and powerful diagnostic technique capable of providing detailed information about the structure and composition of the tissues. This diploma thesis is concerned with the mechanisms of contrast origin and contrast modifications by molecular and nanoparticle contrast agents. First sections of the thesis summarize basic knowledge about pulse sequences and it aims to provide an overview on MRI contrast agent with a special emphasis on paramagnetic gadolinium contrast agents and superparamagnetic nanoparticles. The main purpose of this study is to develop the software called MRICalc, which is able to optimize contrast in MRI images. Based on analysis of signal formula of typical pulse sequences, MRICalc is able to propose the parameters of the pulse sequence for compartment-specific enhancement of the contrast. User chooses from the list of the samples and after calculation he obtains the values of echo time, repetition time and flip angle, all of which simultaneously seem to create the appropriate setting to enhance the contrast. MRICalc also allows to plot contrast function with respect to the chosen parameter. Software, including its graphical user interface, is designed in Python. The sample consists from solution of CuSO4 and distilled water was designed to verify the correct function of MRICalc. Sulphate represents a contrast agent. Preclinical MR system Bruker BioSpec 94/30 USR located at Institute of Scientific Instruments of the ASCR, v.v.i was used to measure contrast curve of FLASH pulse sequence, which is a typical representative of gradient echo. Results of the measurement were compared to the theoretical model provided by MRICalc.
New Optimization Algorithms for a Digital Image Reconstruction in EIT
Kříž, Tomáš ; Koňas, Petr (referee) ; Král, Bohumil (referee) ; Dědková, Jarmila (advisor)
This doctoral thesis proposes a new algorithm for the reconstruction of impedance images in monitored objects. The algorithm eliminates the spatial resolution problems present in existing reconstruction methods, and, with respect to the monitored objects, it exploits both the partial knowledge of configuration and the material composition. The discussed novel method is designed to recognize certain significant fields of interest, such as material defects or blood clots and tumors in biological images. The actual reconstruction process comprises two phases; while the former stage is focused on industry-related images, with the aim to detect defects in conductive materials, the latter one concentrates on biomedical applications. The thesis also presents a description of the numerical model used to test the algorithm. The testing procedure was centred on the resulting impedivity value, influence of the regularization parameter, initial value of the numerical model impedivity, and effect exerted by noise on the voltage electrodes upon the overall reconstruction results. Another issue analyzed herein is the possibility of reconstructing impedance images from components of the magnetic flux density measured outside the investigated object. The given magnetic field is generated by a current passing through the object. The created algorithm for the reconstruction of impedance images is modeled on the proposed algorithm for EIT-based reconstruction of impedance images from voltage. The algoritm was tested for stability, influence of the regularization parameter, and initial conductivity. From the general perspective, the thesis describes the methodology for both magnetic field measurement via NMR and processing of the obtained data.
Numericalanalysis and measurement of the magnetic charakteristics in inhomogeneous materials by the NMR technics
Mrázek, Jiří ; Bartušek, Karel (referee) ; Fiala, Pavel (advisor)
This bachelor thesis is concerned in magnetic susceptibility of specific object (glass cube, with four sticks in the centre). In the first part determining of magnetic susceptibility of object was carried out. Measuring was conducted on tomograph of ÚPT AV ČR. Method of gradient echo, which allows magnetic susceptibility determining of non-magnetic materials, was used. Distribution of magnetic field within the object was acquired (object was measured with and without sticks), the change of magnetic field (between object with and without stick) was subsequently determined. In the second part, magnetic field simulation of the same object in the ANSYS software was performed. Calculation was conducted on 3D model by the finite element analysis. Distribution of magnetic field of object was acquired as a result of simulation. Results from simulation were compared with experimental findings.
New Optimization Algorithms for a Digital Image Reconstruction in EIT
Kříž, Tomáš ; Koňas, Petr (referee) ; Král, Bohumil (referee) ; Dědková, Jarmila (advisor)
This doctoral thesis proposes a new algorithm for the reconstruction of impedance images in monitored objects. The algorithm eliminates the spatial resolution problems present in existing reconstruction methods, and, with respect to the monitored objects, it exploits both the partial knowledge of configuration and the material composition. The discussed novel method is designed to recognize certain significant fields of interest, such as material defects or blood clots and tumors in biological images. The actual reconstruction process comprises two phases; while the former stage is focused on industry-related images, with the aim to detect defects in conductive materials, the latter one concentrates on biomedical applications. The thesis also presents a description of the numerical model used to test the algorithm. The testing procedure was centred on the resulting impedivity value, influence of the regularization parameter, initial value of the numerical model impedivity, and effect exerted by noise on the voltage electrodes upon the overall reconstruction results. Another issue analyzed herein is the possibility of reconstructing impedance images from components of the magnetic flux density measured outside the investigated object. The given magnetic field is generated by a current passing through the object. The created algorithm for the reconstruction of impedance images is modeled on the proposed algorithm for EIT-based reconstruction of impedance images from voltage. The algoritm was tested for stability, influence of the regularization parameter, and initial conductivity. From the general perspective, the thesis describes the methodology for both magnetic field measurement via NMR and processing of the obtained data.
Contrast enhancement for tissue discrimination and contrast nanoparticle detection by MRI
Bačovský, Jaromír ; Macíček, Ondřej (referee) ; Starčuk, Zenon (advisor)
Magnetic resonance imaging is a routine and powerful diagnostic technique capable of providing detailed information about the structure and composition of the tissues. This diploma thesis is concerned with the mechanisms of contrast origin and contrast modifications by molecular and nanoparticle contrast agents. First sections of the thesis summarize basic knowledge about pulse sequences and it aims to provide an overview on MRI contrast agent with a special emphasis on paramagnetic gadolinium contrast agents and superparamagnetic nanoparticles. The main purpose of this study is to develop the software called MRICalc, which is able to optimize contrast in MRI images. Based on analysis of signal formula of typical pulse sequences, MRICalc is able to propose the parameters of the pulse sequence for compartment-specific enhancement of the contrast. User chooses from the list of the samples and after calculation he obtains the values of echo time, repetition time and flip angle, all of which simultaneously seem to create the appropriate setting to enhance the contrast. MRICalc also allows to plot contrast function with respect to the chosen parameter. Software, including its graphical user interface, is designed in Python. The sample consists from solution of CuSO4 and distilled water was designed to verify the correct function of MRICalc. Sulphate represents a contrast agent. Preclinical MR system Bruker BioSpec 94/30 USR located at Institute of Scientific Instruments of the ASCR, v.v.i was used to measure contrast curve of FLASH pulse sequence, which is a typical representative of gradient echo. Results of the measurement were compared to the theoretical model provided by MRICalc.
MRI Acquisition of Image Sequences for Preclinical Perfusion Imaging
Krátká, Lucie ; Bartoš, Michal (referee) ; Jiřík, Radovan (advisor)
The task of this thesis is to study methods for the acquisition perfusní imaging based on dynamic MR imaging with T1 contrast. It describes methods of measurement of T1 relaxation time and the possibility of evaluating the results. It further describes the phantoms and their use. And it is here mentioned for the dynamic acquisition protocol perfusní imaging. There is also described in detail created a program for automatic control of the NMR system. In the experimental measurements are performed on static and dynamic phantom, are also evaluated perfusion parameters from the Flash sequence.

National Repository of Grey Literature : 12 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.