National Repository of Grey Literature 17 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
RESEARCH AND DEVELOPMENT COMPOSITE MATERIAL WITH A HIGHER RESISTANCE TO HIGH TEMPERATURES
Válek, Jaroslav ; Durica,, Tibor (referee) ; Kolář,, Karel (referee) ; Sitek,, Libor (referee) ; Bodnárová, Lenka (advisor)
Concrete has many advantageous properties as regards resistance to fire. It is non-flammable and it has a low thermal conductivity. However, concrete structures, which are not designed for resistance against fire, show significant damage after heating. In particular, the explosive flaking with the consequence of weakening the reinforced concrete cross-section and exposing the steel reinforcement to the temperatures higher than critical temperature of reinforcement. There are only a few possible measures of preventing or mitigating the effects temperature load used. Ways of protection can be divided into two systems: active and passive. Active systems are designed to ensure the greatest possible reduction of temperatures the concrete is exposed to. Passive systems directly resist to high temperatures and fire. Design of composition of concrete with the aim of higher resistance to exposition to high temperatures belongs among the passive systems. A part of the work focuses on summary searches of the problems of concrete and reinforced concrete structures exposed to high temperatures and fire. The goal of the work is defining requirements for cement matrix based composite material and its design ensuring the highest possible resistance to high temperatures or direct fire.
The behavior of cementitious composites with fiber reinforcement at high temperatures
Fichtová, Zlata ; Herka, Petr (referee) ; Bodnárová, Lenka (advisor)
This master’s thesis studies the influence of dispersed reinforcement on the behaviour of cement composites at thermal loading. In the theoretical part of the research was performed knowledge of the behaviour of concrete at high temperatures. The paper describes the on-going happening in the individual components of concrete and benefits of using dispersed reinforcement. In the practical part were designed concrete mixtures with different types and quantities of fibers. The object of the research was to determine how different types and amounts of fibers affect the physical - mechanical properties of concrete and their suitability for use in high temperatures.
Development of repair mortar with resistance to high temperatures
Šottl, Jiří ; Gross, Tomáš (referee) ; Bydžovský, Jiří (advisor)
Currently, increasing reinforced concrete structures and concrete structures that require repair in the form of remediation. The master’s thesis deals with the development of repair mortars with resistance to high temperatures, which would allow the re-profiling of the fire damaged parts of the structures and restore its function. Development of repair mortars is based on a literature review of articles dealing with research materials resistant to high temperatures.
Behavior of concrete at high temperatures
Dvořáková, Michaela ; Bruckner,, Dipl Heinrich (referee) ; Bodnárová, Lenka (advisor)
The aim of this diploma thesis is to focus on the resistance of concrete exposed to high temperatures especially with focus of resistance against explosive spalling as well as clarifying the mode of action of various types of polypropylene fibres. The theoretical part is an introduction to the issues of explosive spalling, its mechanisms and majority influencing factors. Further description of the processes taking place in the structure of concrete under extreme thermal load, distribution and size of pores in concrete, thermal load, temperature-time curves and their applications, methods of elimination of negative behaviour of concrete exposed to thermal loading (passive and active methods), mode of action of polypropylene fibres and more is also included in the theoretical part. The main aim of experimental part is to verify the function of polypropylene fibers of various Melt Flow Indexes (MFI) and dosage. Primarily, the test samples with content of the PP-fibers are compared to the reference sample without fibers. Secondarily, the samples with standard PP-fibers (with MFI 25) with dosage 2.0 kg/m3 are compared to samples with modified PP-fiber (with MFI 2500) of dosage 0.9 kg/m3. Photogrammetric images were used for evaluation and comparison of spalled surfaces and its depth. Determination of the softening temperature and melting point of the modified and standard PP-fibers was made by using a high temperature microscope video. The second part of the experimental work was to define concrete permeability at different temperatures and pressures. Permeability was measured at temperatures of 20°C, 90°C, 150°C, 175°C, 200°C, 225°C and 250°C and at pressure of 0.2, 0.4 and 0.6 MPa.
Influence of high temperatures on concrete properties
Klobása, Jan ; Křížová, Klára (referee) ; Sedlmajer, Martin (advisor)
The aim of this bachelor thesis is to study the problem of the behavior of concrete under high temperatures. The theoretical part of the work summarizes the knowledge about the changes that take place in concrete when it is exposed to a high thermal load that simulates the effects of fire. It also summarizes the effect of high temperatures on the behavior of the individual components that make up concrete. Emphasis is placed on describing the possibilities of eliminating concrete damage at high temperatures. Furthermore, the principles of changes and events due to high temperatures simulating the effect of fire are described. The experimental part summarizes the knowledge related to the composition of concrete, the use of different types of fibers, and other measures in loading concrete at high temperatures. Steps influencing the negative impact on the properties and resistance of concrete to high temperatures are also described. Based on the summarized findings, conclusions are formulated.
Influence of the type of dispersed reinforcement on selected properties of concrete
Gajdušková, Patricie ; Křížová, Klára (referee) ; Sedlmajer, Martin (advisor)
This thesis is focused on the usage of fibers in concrete. The fibers are dispersed reinforcement which may have different behaviour based on the material characteristics or the geometric shape of the fibers. Due to this, we may predict the appropriate application of fibers and possibly improve mechanical properties of concrete. At the same time, the influence of used fibers on the behaviour of the concrete when exposed to high temperatures, thus the fire resistance of material, is observed. The purpose of this thesis is to compare the properties of the individual fiber types in concrete, which are suitable for specific application of fibre reinforced concrete.
Study of the influence organic fibres on the fire resistance of concrete
Klobása, Jan ; Přikryl, Jan (referee) ; Sedlmajer, Martin (advisor)
The master thesis is focused on current issues of concrete behaviour under high temperatures. In the theoretical part, a search of knowledge about changes in concrete, which take place when exposed to thermal loads, which simulates the effect of fire, is performed, and summarized. It is also important to summarize the changes in the individual components that are used to produce concrete. This work describes the effect of high temperatures on mechanical and physical properties as well. There is an information about the most used fibres and their function in concrete. Emphasis is placed on describing the possibility of using recycled PET or cellulose fibres due to the positive environmental impact. In the experimental part, recipes with different types and amounts of fibres are proposed. The subject of the research was to determine how individual types and amounts of fibres affect the physical mechanical properties of concrete and their suitability for use at high temperatures. Microscopic scanning and study of changes in the structure of concrete was also performed.
Study of the influence organic fibres on the fire resistance of concrete
Klobása, Jan ; Přikryl, Jan (referee) ; Sedlmajer, Martin (advisor)
The master thesis is focused on current issues of concrete behaviour under high temperatures. In the theoretical part, a search of knowledge about changes in concrete, which take place when exposed to thermal loads, which simulates the effect of fire, is performed, and summarized. It is also important to summarize the changes in the individual components that are used to produce concrete. This work describes the effect of high temperatures on mechanical and physical properties as well. There is an information about the most used fibres and their function in concrete. Emphasis is placed on describing the possibility of using recycled PET or cellulose fibres due to the positive environmental impact. In the experimental part, recipes with different types and amounts of fibres are proposed. The subject of the research was to determine how individual types and amounts of fibres affect the physical mechanical properties of concrete and their suitability for use at high temperatures. Microscopic scanning and study of changes in the structure of concrete was also performed.
Influence of the type of dispersed reinforcement on selected properties of concrete
Gajdušková, Patricie ; Křížová, Klára (referee) ; Sedlmajer, Martin (advisor)
This thesis is focused on the usage of fibers in concrete. The fibers are dispersed reinforcement which may have different behaviour based on the material characteristics or the geometric shape of the fibers. Due to this, we may predict the appropriate application of fibers and possibly improve mechanical properties of concrete. At the same time, the influence of used fibers on the behaviour of the concrete when exposed to high temperatures, thus the fire resistance of material, is observed. The purpose of this thesis is to compare the properties of the individual fiber types in concrete, which are suitable for specific application of fibre reinforced concrete.
Influence of high temperatures on concrete properties
Klobása, Jan ; Křížová, Klára (referee) ; Sedlmajer, Martin (advisor)
The aim of this bachelor thesis is to study the problem of the behavior of concrete under high temperatures. The theoretical part of the work summarizes the knowledge about the changes that take place in concrete when it is exposed to a high thermal load that simulates the effects of fire. It also summarizes the effect of high temperatures on the behavior of the individual components that make up concrete. Emphasis is placed on describing the possibilities of eliminating concrete damage at high temperatures. Furthermore, the principles of changes and events due to high temperatures simulating the effect of fire are described. The experimental part summarizes the knowledge related to the composition of concrete, the use of different types of fibers, and other measures in loading concrete at high temperatures. Steps influencing the negative impact on the properties and resistance of concrete to high temperatures are also described. Based on the summarized findings, conclusions are formulated.

National Repository of Grey Literature : 17 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.