National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
Preparation of encapsulated enzymes for cosmetics application
Bokrová, Jitka ; Čarnecká, Martina (referee) ; Márová, Ivana (advisor)
Presented diploma thesis is focused on testing of an appropriate form of encapsulated enzymes intended for application in cosmetic and pharmaceutical industry. For encapsulation, proteolytic enzymes bromelain, papain and collagenase were used. These enzymes were encapsulated into alginate and chitosan microparticles prepared by an encapsulator and packed into liposomes. Encapsulation effectiveness was evaluated by analysis of total proteins. Particles stability was evaluated in model and real conditions by photometrical analysis of released proteins. Proteolytic activity of released enzymes in model and real conditions were observed too. Alginate and chitosan microparticles prepared by the encapsulator were found as an appropriate form of encapsulated enzymes designed to wound healing. Encapsulation effectiveness of these particles and stability in model conditions were good in comparison with liposomes. Hydrogel and water-oil emulsion were used for analysis of particles stability at real conditions. Hydrogel was found as a good option for preservation of particles as well as proteolytic enzyme activity. Emulsion made particles less stable and proteolytic activity of enzymes decreased rapidly. Encapsulation enables long-term stabilization of biologically active compounds as well as possibility of targeted transport and controlled releasing. Presented diploma thesis suggests possibilities of application encapsulated enzymes in designing more effective formulations for wound healing.
Probiotics and prebiotics and their co-encapsulation
Šnajdarová, Karolína ; Bokrová, Jitka (referee) ; Márová, Ivana (advisor)
This bachelor thesis is focused on study of probiotic cultures and options of coencapsulation with specific substrates called prebiotics. Lactobacillus acidophilus and Bifidobacterium breve were used as encapsulated microorganisms. As the specific substrates inulin, psyllium, apple fiber and hemp fiber were tested. Prebiotics was added to probiotics both in untreated form and in hydrolyzed form. The stability and viability of the cells have been studied by microscopy for the period of 6 weeks. Particles were stored in the enviroment of 2.5% citric acid. As the best substrate for cell growth the hemp fiber was found. The hemp fiber exhibited the highest increase of cells count. During observation of long-term stability in the model digestive conditions, particles with hemp fiber were destroyed in instestinal juices. For that reason, particles with hemp fiber could be used in food supplements with targeted transport. The bachalor thesis is also focused on characterisation of prebiotics components. The highest amount of total sugars in the group of non-hydrolyzed prebiotics exhibited psyllium. The highest content of reducing sugars both in the groups of non-hydrolyzed and hydrolyzed prebiotic had hemp fiber. By the method of thin-layer chromatography was found out that the main components of hydrolyzed prebiotics are glucose and fructose. Further, some disaccharides and oligosaccharides were obtained by TLC analysis. For characterisation of prebiotics by HPLC the column Rezex exhibited better sensitivity. HPLC analysis confirmed that the main components of prebiotics are glucose and fructose, some more complex carbohydrates were found too.
Encapsulation of some enzymes into organic particles
Hazuchová, Eva ; Obruča, Stanislav (referee) ; Márová, Ivana (advisor)
This bachelor thesis is focused on encapsulation of some enzymes into organic particles. The theoretical part is aimed to enzymes, their general characteristics, structure, activity and use, and to encapsulation techniques. Some methods used for analysis of particles, namely the determination of the distribution of particle size using dynamic light scattering, and determining the stability of the particles by the zeta potential, are described too. The experimental part describes methods of preparing particles, methods of determining the encapsulation efficiency and methods for determining particle size and stability. During the experiment part four types of enzymes were encapsulated, partly by manual preparation and partly by encapsulator. Encapsulation efficiency, size and stability of prepared particles were determined too. The particles were exposed to artificial intestinal, gastric and bile juices, as well as the effect of model foods. Subsequently, their long-term stability was observed.
Encapsulation of lactic acid bacteria
Vrtná, Monika ; Lichnová, Andrea (referee) ; Márová, Ivana (advisor)
This bachelor thesis is focused on encapsulation of two strains of probiotic bacteria. Lactic acid bacteria were encapsulated into several types of materials, mostly polysaccharides. The theoretical part describes the techniques of encapsulation applicable in the food industry. During the experimental part alginate and chitosan microparticles were prepared. These particles exhibited different sizes and some of them were modified by starch and carboxymethyl cellulose. Particles were used for encapsulation of two strains - Bifidobacterium breve and Lactobacillus acidophilus. Using flow cytometry cell viability was measured after 24-hours cultivation of bacteria. Particles were observed immediately after encapsulation by optical microscopy and then long-term stability in model foods was evaluated after two days, a week and after four weeks of incubation. Using the Bürker chamber the alived and death bacteria were counted inside and outside the capsule. The stability and viability of the cells were studied also in the artificial intestinal, stomach and bile juices. As the best material for encapsulation of lactic acid bacteria 2% alginate modified by carboxymethyl cellulose was found. The highest viability of bacteria was observed in milk as the real model food. Prepared particles are suitable for use in the food industry.
Probiotics and prebiotics and their co-encapsulation
Šnajdarová, Karolína ; Bokrová, Jitka (referee) ; Márová, Ivana (advisor)
This bachelor thesis is focused on study of probiotic cultures and options of coencapsulation with specific substrates called prebiotics. Lactobacillus acidophilus and Bifidobacterium breve were used as encapsulated microorganisms. As the specific substrates inulin, psyllium, apple fiber and hemp fiber were tested. Prebiotics was added to probiotics both in untreated form and in hydrolyzed form. The stability and viability of the cells have been studied by microscopy for the period of 6 weeks. Particles were stored in the enviroment of 2.5% citric acid. As the best substrate for cell growth the hemp fiber was found. The hemp fiber exhibited the highest increase of cells count. During observation of long-term stability in the model digestive conditions, particles with hemp fiber were destroyed in instestinal juices. For that reason, particles with hemp fiber could be used in food supplements with targeted transport. The bachalor thesis is also focused on characterisation of prebiotics components. The highest amount of total sugars in the group of non-hydrolyzed prebiotics exhibited psyllium. The highest content of reducing sugars both in the groups of non-hydrolyzed and hydrolyzed prebiotic had hemp fiber. By the method of thin-layer chromatography was found out that the main components of hydrolyzed prebiotics are glucose and fructose. Further, some disaccharides and oligosaccharides were obtained by TLC analysis. For characterisation of prebiotics by HPLC the column Rezex exhibited better sensitivity. HPLC analysis confirmed that the main components of prebiotics are glucose and fructose, some more complex carbohydrates were found too.
Preparation of encapsulated enzymes for cosmetics application
Bokrová, Jitka ; Čarnecká, Martina (referee) ; Márová, Ivana (advisor)
Presented diploma thesis is focused on testing of an appropriate form of encapsulated enzymes intended for application in cosmetic and pharmaceutical industry. For encapsulation, proteolytic enzymes bromelain, papain and collagenase were used. These enzymes were encapsulated into alginate and chitosan microparticles prepared by an encapsulator and packed into liposomes. Encapsulation effectiveness was evaluated by analysis of total proteins. Particles stability was evaluated in model and real conditions by photometrical analysis of released proteins. Proteolytic activity of released enzymes in model and real conditions were observed too. Alginate and chitosan microparticles prepared by the encapsulator were found as an appropriate form of encapsulated enzymes designed to wound healing. Encapsulation effectiveness of these particles and stability in model conditions were good in comparison with liposomes. Hydrogel and water-oil emulsion were used for analysis of particles stability at real conditions. Hydrogel was found as a good option for preservation of particles as well as proteolytic enzyme activity. Emulsion made particles less stable and proteolytic activity of enzymes decreased rapidly. Encapsulation enables long-term stabilization of biologically active compounds as well as possibility of targeted transport and controlled releasing. Presented diploma thesis suggests possibilities of application encapsulated enzymes in designing more effective formulations for wound healing.
Encapsulation of lactic acid bacteria
Vrtná, Monika ; Lichnová, Andrea (referee) ; Márová, Ivana (advisor)
This bachelor thesis is focused on encapsulation of two strains of probiotic bacteria. Lactic acid bacteria were encapsulated into several types of materials, mostly polysaccharides. The theoretical part describes the techniques of encapsulation applicable in the food industry. During the experimental part alginate and chitosan microparticles were prepared. These particles exhibited different sizes and some of them were modified by starch and carboxymethyl cellulose. Particles were used for encapsulation of two strains - Bifidobacterium breve and Lactobacillus acidophilus. Using flow cytometry cell viability was measured after 24-hours cultivation of bacteria. Particles were observed immediately after encapsulation by optical microscopy and then long-term stability in model foods was evaluated after two days, a week and after four weeks of incubation. Using the Bürker chamber the alived and death bacteria were counted inside and outside the capsule. The stability and viability of the cells were studied also in the artificial intestinal, stomach and bile juices. As the best material for encapsulation of lactic acid bacteria 2% alginate modified by carboxymethyl cellulose was found. The highest viability of bacteria was observed in milk as the real model food. Prepared particles are suitable for use in the food industry.
Encapsulation of some enzymes into organic particles
Hazuchová, Eva ; Obruča, Stanislav (referee) ; Márová, Ivana (advisor)
This bachelor thesis is focused on encapsulation of some enzymes into organic particles. The theoretical part is aimed to enzymes, their general characteristics, structure, activity and use, and to encapsulation techniques. Some methods used for analysis of particles, namely the determination of the distribution of particle size using dynamic light scattering, and determining the stability of the particles by the zeta potential, are described too. The experimental part describes methods of preparing particles, methods of determining the encapsulation efficiency and methods for determining particle size and stability. During the experiment part four types of enzymes were encapsulated, partly by manual preparation and partly by encapsulator. Encapsulation efficiency, size and stability of prepared particles were determined too. The particles were exposed to artificial intestinal, gastric and bile juices, as well as the effect of model foods. Subsequently, their long-term stability was observed.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.