National Repository of Grey Literature 9 records found  Search took 0.00 seconds. 
Study enantioselectivity and synthesis of β-lactam antibiotics catalyzed by penicilin G acylase: Biocatalysis and in-silico experiments
Grulich, Michal ; Kyslík, Pavel (advisor) ; Kotík, Michal (referee) ; Ettrich, Rüdiger (referee)
11 Abstract Penicillin G acylases (PGAs) belong among enantioselective enzymes catalyzing a hydrolysis of stable amide bond in a broad spectrum of substrates, often having high application potential. PGAEc from Escherichia coli and PGAA from microorganism Achromobacter sp. CCM 4824 were used to catalyze enantioselective hydrolyses of seven selected N-phenylacetylated (N-PhAc) α/β-amino acid racemates. The PGAA showed higher stereoselectivity for three (S) enantiomers: N-PhAc-β-homoleucine, N-PhAc-α-tert- leucine and N-PhAc-β-leucine. We have constructed a homology model of PGAA that was used in molecular docking experiments with the same substrates. In-silico experiments reproduced the data from experimental enzymatic resolutions confirming validity of employed modeling protocol. We employed this protocol to evaluate enantiopreference of PGAA towards seven new substrates with application potential. For five of them, high enantioselectivity of PGAA was predicted for. PGAA was further studied in kinetically controlled syntheses of β-lactam antibiotics (SSBA). The PGAA was significantly more efficient at synthese of ampicillin and amoxicillin (higher S/H ratio and product accumulation) compared with PGAEc . Analogously to prediction of enantioselectivity of PGAA towards new substrates this protocol was applied...
Study of enantioselectivity and synthesis of β-lactam antibiotics catalyzed by penicilin-G-acylase: Biocatalysis and in-silico experiments
Grulich, Michal
11 Abstract Penicillin G acylases (PGAs) belong among enantioselective enzymes catalyzing a hydrolysis of stable amide bond in a broad spectrum of substrates, often having high application potential. PGAEc from Escherichia coli and PGAA from microorganism Achromobacter sp. CCM 4824 were used to catalyze enantioselective hydrolyses of seven selected N-phenylacetylated (N-PhAc) α/β-amino acid racemates. The PGAA showed higher stereoselectivity for three (S) enantiomers: N-PhAc-β-homoleucine, N-PhAc-α-tert- leucine and N-PhAc-β-leucine. We have constructed a homology model of PGAA that was used in molecular docking experiments with the same substrates. In-silico experiments reproduced the data from experimental enzymatic resolutions confirming validity of employed modeling protocol. We employed this protocol to evaluate enantiopreference of PGAA towards seven new substrates with application potential. For five of them, high enantioselectivity of PGAA was predicted for. PGAA was further studied in kinetically controlled syntheses of β-lactam antibiotics (SSBA). The PGAA was significantly more efficient at synthese of ampicillin and amoxicillin (higher S/H ratio and product accumulation) compared with PGAEc . Analogously to prediction of enantioselectivity of PGAA towards new substrates this protocol was applied...
Study enantioselectivity and synthesis of β-lactam antibiotics catalyzed by penicilin G acylase: Biocatalysis and in-silico experiments
Grulich, Michal ; Kyslík, Pavel (advisor) ; Kotík, Michal (referee) ; Ettrich, Rüdiger (referee)
11 Abstract Penicillin G acylases (PGAs) belong among enantioselective enzymes catalyzing a hydrolysis of stable amide bond in a broad spectrum of substrates, often having high application potential. PGAEc from Escherichia coli and PGAA from microorganism Achromobacter sp. CCM 4824 were used to catalyze enantioselective hydrolyses of seven selected N-phenylacetylated (N-PhAc) α/β-amino acid racemates. The PGAA showed higher stereoselectivity for three (S) enantiomers: N-PhAc-β-homoleucine, N-PhAc-α-tert- leucine and N-PhAc-β-leucine. We have constructed a homology model of PGAA that was used in molecular docking experiments with the same substrates. In-silico experiments reproduced the data from experimental enzymatic resolutions confirming validity of employed modeling protocol. We employed this protocol to evaluate enantiopreference of PGAA towards seven new substrates with application potential. For five of them, high enantioselectivity of PGAA was predicted for. PGAA was further studied in kinetically controlled syntheses of β-lactam antibiotics (SSBA). The PGAA was significantly more efficient at synthese of ampicillin and amoxicillin (higher S/H ratio and product accumulation) compared with PGAEc . Analogously to prediction of enantioselectivity of PGAA towards new substrates this protocol was applied...
Study of enantioselectivity and synthesis of β-lactam antibiotics catalyzed by penicilin-G-acylase: Biocatalysis and in-silico experiments
Grulich, Michal
11 Abstract Penicillin G acylases (PGAs) belong among enantioselective enzymes catalyzing a hydrolysis of stable amide bond in a broad spectrum of substrates, often having high application potential. PGAEc from Escherichia coli and PGAA from microorganism Achromobacter sp. CCM 4824 were used to catalyze enantioselective hydrolyses of seven selected N-phenylacetylated (N-PhAc) α/β-amino acid racemates. The PGAA showed higher stereoselectivity for three (S) enantiomers: N-PhAc-β-homoleucine, N-PhAc-α-tert- leucine and N-PhAc-β-leucine. We have constructed a homology model of PGAA that was used in molecular docking experiments with the same substrates. In-silico experiments reproduced the data from experimental enzymatic resolutions confirming validity of employed modeling protocol. We employed this protocol to evaluate enantiopreference of PGAA towards seven new substrates with application potential. For five of them, high enantioselectivity of PGAA was predicted for. PGAA was further studied in kinetically controlled syntheses of β-lactam antibiotics (SSBA). The PGAA was significantly more efficient at synthese of ampicillin and amoxicillin (higher S/H ratio and product accumulation) compared with PGAEc . Analogously to prediction of enantioselectivity of PGAA towards new substrates this protocol was applied...
Epoxide hydrolases expressed from environmental DNA: characteristics of soluble and immobilized enzyme forms
Grulich, Michal ; Bezouška, Karel (advisor) ; Čabala, Radomír (referee)
8 Abstract Epoxide hydrolases (EHs) demonstrating high degree of enantioselectivity or enantioconvergence are useful biocatalysts for the production of optically active epoxides and vicinal diols, which can serve as chiral building blocks for syntheses of biologically active drugs. EHs can play an important role also in degradations of xenobiotics. Genes encoding EHs Kau2 and Kau8 were expressed in E. coli host strains TOP10 and RE3. Enantioselectivities and regioselectivities of Kau2 and Kau8 in supernatants of desintegrated cells were determined for four substrates: tert-butylglycidyl ether, para-chlorostyrene oxide, para-nitrostyrene oxide, α-methylstyrene oxide. The highest values of enantioselectivity and regioselectivity were achieved with Kau2 and para-nitrostyrene oxide as a substrate. The Kau2 was chosen for further experiments on the basis of these results. Kau2 was overexpressed in the recombinant strain RE3(pSEKau2). We performed two batch cultures and one fed-batch culture in stirred bioreactor. The highest volumetric activity of 4500 U/l was obtained in the case of fed-batch culture. Two phase system consisting of polyethylenglycole 6000 and sodium citrate (pH 7.7) was used for Kau2 purification from the supernatant of desintegrated cells. Purification factor 2.6 +/- 0.3 was achieved and...
Simeprevir
Bečka, Stanislav ; Babiak, Petr ; Kyslík, Pavel
Screening of KRED enzymes capable of enantioselective hydroxylation of ketones.
Microreactors for Studying Enantioselective Reactions
Pavlorková, Jana
Fulltext: content.csg - Download fulltextPDF
Plný tet: SKMBT_C22013082212450 - Download fulltextPDF

Interested in being notified about new results for this query?
Subscribe to the RSS feed.