National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Myoelectric prosthetic device of human arm
Lutz, Jan ; Kozumplík, Jiří (referee) ; Kuna, Zdeněk (advisor)
This project treats of using electromyograph as a control standard for prosthetic replacement of human arm. The work is mainly focused on surface signals. Reader is briefed by creation and transmission of the signal. The work takes account of the transmission of the signal for surface electrodes and the differences between the ideal and the real connection. Another point of the thesis is the design of basic system model for simulation of the robotic arm movement, which depends on the measured signal. In the practical part there is the realization of the artificial limb movement. It starts with the roboric arm construction and continues with the communication between computer and the robotic arm. First part of practical testing ends with creating of an user interface, which is capable of control all robotic arm movements. The interface is combined with a computer model in Matlab robotic toolbox. The model is able to move in sync with the real robot. The final part is devoted to practical measurement with Biopac instruments. The obtained signal is modified to be used as controller for the robotic arm. Author's aim is to adjust this movement to be most similar to real movement.
Active Prosthetic Hand
Svoboda, Michal
The aim of this thesis is to propose and produce prototype of active hand prosthesis. Prototype is based on myoelectric prosthesis principle, therefore it is meant to be controlled by EMG signals. In this specific case signals will be scanned from healthy arm. Arduino UNO development kit was chosen as the main controller. For measuring EMG muscle activity Shield EKG/EMG Olimax was selected.
Myoelectric prosthetic device of human arm
Lutz, Jan ; Kozumplík, Jiří (referee) ; Kuna, Zdeněk (advisor)
This project treats of using electromyograph as a control standard for prosthetic replacement of human arm. The work is mainly focused on surface signals. Reader is briefed by creation and transmission of the signal. The work takes account of the transmission of the signal for surface electrodes and the differences between the ideal and the real connection. Another point of the thesis is the design of basic system model for simulation of the robotic arm movement, which depends on the measured signal. In the practical part there is the realization of the artificial limb movement. It starts with the roboric arm construction and continues with the communication between computer and the robotic arm. First part of practical testing ends with creating of an user interface, which is capable of control all robotic arm movements. The interface is combined with a computer model in Matlab robotic toolbox. The model is able to move in sync with the real robot. The final part is devoted to practical measurement with Biopac instruments. The obtained signal is modified to be used as controller for the robotic arm. Author's aim is to adjust this movement to be most similar to real movement.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.