National Repository of Grey Literature 9 records found  Search took 0.01 seconds. 
Interaction partners of protein eIF4E2 in human cells
Pospíšilová, Klára ; Pospíšek, Martin (advisor) ; Hálová, Martina (referee)
Protein eIF4E2 belongs to the family of eukaryotic translation initiation factors 4E, but it does not participate in translation initiation under normal circumstances. Its main role lies in translational repression of specific mRNAs. Nevertheless eIF4E2 takes part in translation initiation as a subunit of a specific translation initiation complex in hypoxic conditions. The exact mechanism in which eIF4E2 takes part in either of these processes is not known. One way to study the role of eIF4E2 in the cell is to find out what other proteins does eIF4E2 interact with. The goal of this work was to seek out potential eIF4E2-interacting partners in the HEK293 cell line using immunoprecipitation followed by mass spek- trometry. Apart from finding individual proteins the goal was to identify eIF4E2-containig protein com- plexes in HEK293 cells. A second line of work was preparation of a system for screening inhibitors of the interaction between eIF4E2 and eIF4G3. The main result is finding potential new eIF4E2-intera- cting partners in human cells.
Noncanonical human eIF4Es in and out of the RNA granules
Frydrýšková, Klára ; Pospíšek, Martin (advisor) ; Půta, František (referee) ; Valášek, Leoš (referee)
Eukaryotic translation initiation factor eIF4E1 (eIF4E1) plays a pivotal role in the control of cap-dependent translation initiation, occurs in P- bodies and is important for the formation of stress granules (SG). Human cells encompass two other non-canonical translation initiation factors capable of cap binding although with a lower affinity for the cap: eIF4E2 and eIF4E3. Here, I investigated the ability of individual eIF4E family members and their variants to localize to SGs and P-bodies in stress-free, arsenite and heat shock conditions. Under all tested conditions, both eIF4E1 and eIF4E2 proteins and all their variants localized to P-bodies unlike eIF4E3 protein variants. Under both arsenite and heat stress conditions all tested variants of eIF4E1 and the variant eIF4E3-A localized to SGs albeit with different abilities. Protein eIF4E2 and all its investigated variants localized specifically to a major part of heat stress-induced stress granules. Further analysis showed that approximately 75% of heat stress-induced stress granules contain all three eIF4Es, while in 25% of them eIF4E2 is missing. Large ribosomal subunit protein L22 was found specifically enriched in arsenite induced SGs. Heat stress-induced re- localization of several proteins typical for P-bodies such as eIF4E2, DCP-1, AGO-2...
The family of 4E translation factors explored in human cell lines
Čečmanová, Vendula ; Mašek, Tomáš (advisor) ; Herrmannová, Anna (referee)
The eIF4E is an important eukaryotic translation initiation factor, because of its ability to bind cap at 5'end of mRNA. There are three members of this protein family found in humans: eIF4E1, eIF4E2 and eIF4E3. eIF4E1 also plays role in in export of some mRNA from nucleus to cytoplasm. This protein is mostly regulated by mTOR signaling pathway and malfunctions in regulation leads to increased cell proliferation and thus tumorogenesis. eIF4E2 plays a role in regulating of translation during embryogenesis and it is known to mediate translation in terms of hypoxia. Role of eIF4E3 is so far shrouded in mystery. Some studies suggest it might be able to suppress tumor growth, but no studies have been done on human eIF4E3. Big potential of our work is, that all proteins we work with, are human. Based on our results, the endogenous amount of eIF4E3 protein is higher than it was thought. This is one of the reasons, why this protein should not escape our attention. In my diploma thesis, I have studied physiological characteristics of cell cultures overexpressing eIF4E proteins after mTOR inhibition treatment. I have realized that the most efficient inhibitor in all tested cell cultures is PP-242, which binds directly into active site of mTOR kinase. I have cloned 3xC FLAG tagged eIF4Es constructs and used...
4E translation initiation factors and their influence on regulation of gene expression
Lettrich, Patrik ; Mašek, Tomáš (advisor) ; Převorovský, Martin (referee)
The translation represents one of the most crucial processes in the cell. That is why it is often targeted by various regulations. Its initiation phase has a particularly important role in regulatory processes. Initiation of translation usually starts by recognition and binding of canonical eukaryotic initiation factor 4E1 (eIF4E1) to the methylguanosine cap present on the 5' end of the majority of eukaryotic mRNA. The family of 4E translation initiation factors contains two more members - eIF4E2 and eIF4E3. Those two proteins can bind cap structure as well which predetermines it to function in the regulation of translation. Protein eIF4E2 is well known for being a translational repressor in development processes and it takes part in specific miRNA-dependent silencing. It was proven to be able to initiate translation in hypoxia which is consistent with its proposed role in hypoxic tumor cells. The biological roles of the protein eIF4E3 are much less understood. This thesis propounds the picture of the overall functions of all discussed translation initiation factors using cell lines with their overexpression or deletion. Experimental data confirmed the role of the eIF4E2 in the regulation of developmental processes. Cell lines with deleted eIF4E2 and eIF4E3 were characterized based on the influence...
Interaction partners of protein eIF4E2 in human cells
Pospíšilová, Klára ; Pospíšek, Martin (advisor) ; Hálová, Martina (referee)
Protein eIF4E2 belongs to the family of eukaryotic translation initiation factors 4E, but it does not participate in translation initiation under normal circumstances. Its main role lies in translational repression of specific mRNAs. Nevertheless eIF4E2 takes part in translation initiation as a subunit of a specific translation initiation complex in hypoxic conditions. The exact mechanism in which eIF4E2 takes part in either of these processes is not known. One way to study the role of eIF4E2 in the cell is to find out what other proteins does eIF4E2 interact with. The goal of this work was to seek out potential eIF4E2-interacting partners in the HEK293 cell line using immunoprecipitation followed by mass spek- trometry. Apart from finding individual proteins the goal was to identify eIF4E2-containig protein com- plexes in HEK293 cells. A second line of work was preparation of a system for screening inhibitors of the interaction between eIF4E2 and eIF4G3. The main result is finding potential new eIF4E2-intera- cting partners in human cells.
Noncanonical human eIF4Es in and out of the RNA granules
Frydrýšková, Klára ; Pospíšek, Martin (advisor) ; Půta, František (referee) ; Valášek, Leoš (referee)
Eukaryotic translation initiation factor eIF4E1 (eIF4E1) plays a pivotal role in the control of cap-dependent translation initiation, occurs in P- bodies and is important for the formation of stress granules (SG). Human cells encompass two other non-canonical translation initiation factors capable of cap binding although with a lower affinity for the cap: eIF4E2 and eIF4E3. Here, I investigated the ability of individual eIF4E family members and their variants to localize to SGs and P-bodies in stress-free, arsenite and heat shock conditions. Under all tested conditions, both eIF4E1 and eIF4E2 proteins and all their variants localized to P-bodies unlike eIF4E3 protein variants. Under both arsenite and heat stress conditions all tested variants of eIF4E1 and the variant eIF4E3-A localized to SGs albeit with different abilities. Protein eIF4E2 and all its investigated variants localized specifically to a major part of heat stress-induced stress granules. Further analysis showed that approximately 75% of heat stress-induced stress granules contain all three eIF4Es, while in 25% of them eIF4E2 is missing. Large ribosomal subunit protein L22 was found specifically enriched in arsenite induced SGs. Heat stress-induced re- localization of several proteins typical for P-bodies such as eIF4E2, DCP-1, AGO-2...
miRNA-mediated translational repression
Kučerová, Michaela ; Mašek, Tomáš (advisor) ; Beznosková, Petra (referee)
Recent models of miRNA-mediated translational repression favor initiation as the phase of translation, where the repression is primarily evoked. miRNA-induced silencing complex utilizes miRNA as a guide molecule to find its target mRNA. To inhibit mRNA translation and induce its decay, many other proteins are then recruited, e.g. GW182 protein, PAN2-PAN3 a CCR4-NOT deadenylation complexes, decapping enzyme and eIF4E-binding proteins. miRNA-mediated translational repression is then established by either their concerted action or their consecutive and coordinated binding to target mRNA. To date, several mechanisms have been described: GW182- mediated PABP displacement; GW182-independent translational repression; miRNA-mediated eIF4A1 dissociation or eIF4A2 recruitment; translational repression mediated by deadenylases CAF1 and CCR4; and 4E-T, eIF4E2, GIGYF2 translational repressor proteins recruitment. Here, I provide up-to-the-minute summarization of these mechanisms with the aim to extract any universality from them.
Interactome of the translation initiation factor eIF4E2
Lettrich, Patrik ; Pospíšek, Martin (advisor) ; Zeman, Jakub (referee)
Regulation of gene expression at the level of translation is one of the most prominent processes when it comes to maintaining cellular vital functions in physiolgical norm. Initiation phase plays an especially important role in translational regulation. Majority of eukaryotic mRNAs possess methylguanosine cap on its 5' end. Binding of initiation factor eIF4E1 to cap is substantial part of canonical mechanism of translational initiation. eIF4E1 is component of bigger complex termed eIF4F, whose association with cap mRNA is essential for initiation of translation. Due to cap-binding ability of noncanonical initiation factors and their interaction partners, that are distinct from those of eIF4E1, there can occur specific regulation of translational initiation. One of these noncanonical factors is eIF4E2. In regulatory processes it mostly acts as a translational repressor. Binding of eIF4E2 to cap impedes association of eIF4F complex with mRNA, and therefore inhibits translation. However, eIF4E2 is also able to promote cap-dependent initiation of translation using an alternative mechanism in hypoxic conditions. This thesis represents the first complex analysis of protein-protein interactions and physiological functions of factor eIF4E2 and its homologs in several model organisms. Key words:...
The family of 4E translation factors explored in human cell lines
Čečmanová, Vendula ; Mašek, Tomáš (advisor) ; Herrmannová, Anna (referee)
The eIF4E is an important eukaryotic translation initiation factor, because of its ability to bind cap at 5'end of mRNA. There are three members of this protein family found in humans: eIF4E1, eIF4E2 and eIF4E3. eIF4E1 also plays role in in export of some mRNA from nucleus to cytoplasm. This protein is mostly regulated by mTOR signaling pathway and malfunctions in regulation leads to increased cell proliferation and thus tumorogenesis. eIF4E2 plays a role in regulating of translation during embryogenesis and it is known to mediate translation in terms of hypoxia. Role of eIF4E3 is so far shrouded in mystery. Some studies suggest it might be able to suppress tumor growth, but no studies have been done on human eIF4E3. Big potential of our work is, that all proteins we work with, are human. Based on our results, the endogenous amount of eIF4E3 protein is higher than it was thought. This is one of the reasons, why this protein should not escape our attention. In my diploma thesis, I have studied physiological characteristics of cell cultures overexpressing eIF4E proteins after mTOR inhibition treatment. I have realized that the most efficient inhibitor in all tested cell cultures is PP-242, which binds directly into active site of mTOR kinase. I have cloned 3xC FLAG tagged eIF4Es constructs and used...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.