National Repository of Grey Literature 10 records found  Search took 0.01 seconds. 
Flow through the artifitial heart valve
Šedivý, Dominik ; Pochylý, František (referee) ; Fialová, Simona (advisor)
The presented thesis solves a flow through the artificial heart valves. The thesis concerns with a historic development of mechanical heart valves and their basic parameters. It also includes a short research about Dynamic mesh module, which is contained within ANSYS Fluent. An experiment with a real mechanical heart valve was done within the diploma thesis and obtained data were compared with physiological ones. One part of this work was a design of 3D model of real heart valve replacement. The model was used for fluid dynamic computations using the Dynamic mesh of ANSYS Fluent software. In the end are the results of experimental part and numerical solutions used for few suggestions that could improve the function of the artificial heart valve.
Solution of the unsteady motion of the body in the liquid flow
Zbavitel, Jan ; Kozák, Jiří (referee) ; Fialová, Simona (advisor)
The thesis deals with CFD solution of flow through mechanical heart valves. The opening part includes a research on the negative impacts of implantation of artificial heart valves and the common approaches used in their modeling. This is followed by a detailed analysis of the dynamic mesh functionality and CFD solution is performed using the open-source library FOAM-extend. Part of the thesis focuses on evaluation of the geometry modifications from the perspective of forming the instabilities of the current and the course of force effects on the valve.
Valveless Plunger Pump
Machů, Tomáš ; Kozubková, Milada (referee) ; Melichar, Jan (referee) ; Pochylý, František (advisor)
This thesis deals with valveless reciprocating pumps. Within the thesis several designs of pump geometry are demonstrated. Their parameters were obtained using computational fluid dynamics. Reciprocating piston movement was simulated by time dependent inlet boundary condition or by dynamic mesh. The individual variants were compared mainly from point of view of volumetric efficiency, which was the main evaluated parameter. Results of calculations are presented as dependencies of volumetric efficiency on frequency and amplitude of piston motion and on value of backpressure. Two variants of the prototype pump geometry were manufactured to experimentally validate parameters obtained from calculations. Volumetric efficiency together with hydraulic efficiency were evaluated from measured data.
Peristaltic pump
Burda, Radim ; Fialová, Simona (referee) ; Pochylý, František (advisor)
Cílem této diplomové práce je navrhnout peristaltické čerpadlo pro hemodialýzu s ohledem na minimalizaci tlakových pulzací. Pomocí analytické analýzy je navržen nový koncept redukce tlakových pulzací, který využívá zrychlení k navýšení tlaku v prostoru mezi válečky. Fungování peristaltického čerpadla je simulováno pomocí programu Ansys Fluent pro získání lepší představy o proudění v čerpadle. Souběžně s návrhem nového konceptu bylo navrženo více tradiční čerpadlo, které bylo následně vyrobeno a experimentálně odzkoušeno. Data získaná z experimentu mohou být dále použita pro nový koncept.
Unsteady CFD simulation of flow under a downward moving gate
Málek, Miroslav ; Štefan, David (referee) ; Klas, Roman (advisor)
Emergency gates are important safety feature of hydropower plants. They are used to close the flow in order to protect power plant equipment in case of emergency. In this diploma the-sis are realized CDF simulations of emergency closure of wheel-mounted gate on two-dimensional model of the Slapy hydropower plant. Simulations were performed for the case of constant lowering gate speed and for the case of gravitational closure. Dynamic mesh was used to enable the gate motion. The 6DOF method was used for the case of gravitational clo-sure and user defined function was defined to control movement of the gate. User defined function include gravitational force, hydrodynamic forces and friction force. Simulations were used to verify forces acting on gate and volume flow through gate during closing process. In case of gravitational closure the speed and orientation of closing process and closing process time were determined.
Valveless Plunger Pump
Machů, Tomáš ; Kozubková, Milada (referee) ; Melichar, Jan (referee) ; Pochylý, František (advisor)
This thesis deals with valveless reciprocating pumps. Within the thesis several designs of pump geometry are demonstrated. Their parameters were obtained using computational fluid dynamics. Reciprocating piston movement was simulated by time dependent inlet boundary condition or by dynamic mesh. The individual variants were compared mainly from point of view of volumetric efficiency, which was the main evaluated parameter. Results of calculations are presented as dependencies of volumetric efficiency on frequency and amplitude of piston motion and on value of backpressure. Two variants of the prototype pump geometry were manufactured to experimentally validate parameters obtained from calculations. Volumetric efficiency together with hydraulic efficiency were evaluated from measured data.
Unsteady CFD simulation of flow under a downward moving gate
Málek, Miroslav ; Štefan, David (referee) ; Klas, Roman (advisor)
Emergency gates are important safety feature of hydropower plants. They are used to close the flow in order to protect power plant equipment in case of emergency. In this diploma the-sis are realized CDF simulations of emergency closure of wheel-mounted gate on two-dimensional model of the Slapy hydropower plant. Simulations were performed for the case of constant lowering gate speed and for the case of gravitational closure. Dynamic mesh was used to enable the gate motion. The 6DOF method was used for the case of gravitational clo-sure and user defined function was defined to control movement of the gate. User defined function include gravitational force, hydrodynamic forces and friction force. Simulations were used to verify forces acting on gate and volume flow through gate during closing process. In case of gravitational closure the speed and orientation of closing process and closing process time were determined.
Peristaltic pump
Burda, Radim ; Fialová, Simona (referee) ; Pochylý, František (advisor)
Cílem této diplomové práce je navrhnout peristaltické čerpadlo pro hemodialýzu s ohledem na minimalizaci tlakových pulzací. Pomocí analytické analýzy je navržen nový koncept redukce tlakových pulzací, který využívá zrychlení k navýšení tlaku v prostoru mezi válečky. Fungování peristaltického čerpadla je simulováno pomocí programu Ansys Fluent pro získání lepší představy o proudění v čerpadle. Souběžně s návrhem nového konceptu bylo navrženo více tradiční čerpadlo, které bylo následně vyrobeno a experimentálně odzkoušeno. Data získaná z experimentu mohou být dále použita pro nový koncept.
Solution of the unsteady motion of the body in the liquid flow
Zbavitel, Jan ; Kozák, Jiří (referee) ; Fialová, Simona (advisor)
The thesis deals with CFD solution of flow through mechanical heart valves. The opening part includes a research on the negative impacts of implantation of artificial heart valves and the common approaches used in their modeling. This is followed by a detailed analysis of the dynamic mesh functionality and CFD solution is performed using the open-source library FOAM-extend. Part of the thesis focuses on evaluation of the geometry modifications from the perspective of forming the instabilities of the current and the course of force effects on the valve.
Flow through the artifitial heart valve
Šedivý, Dominik ; Pochylý, František (referee) ; Fialová, Simona (advisor)
The presented thesis solves a flow through the artificial heart valves. The thesis concerns with a historic development of mechanical heart valves and their basic parameters. It also includes a short research about Dynamic mesh module, which is contained within ANSYS Fluent. An experiment with a real mechanical heart valve was done within the diploma thesis and obtained data were compared with physiological ones. One part of this work was a design of 3D model of real heart valve replacement. The model was used for fluid dynamic computations using the Dynamic mesh of ANSYS Fluent software. In the end are the results of experimental part and numerical solutions used for few suggestions that could improve the function of the artificial heart valve.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.