National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
Genetická variabilita populací chvostoskoka \kur{Parisotoma notabilis} (Isotomidae, Collembola) v homogenním (městském) a heterogenním (přírodním) prostředí.
ŠVECOVÁ, Žaneta
The main aim of this thesis was to identify molecular markers that will help to determine the genetic variability among populations of springtail Parisotoma notabilis. Mitochondrial marker COI was successfully amplified and sequenced. Obtained sequences were used for genetic analysis and comparison of populations in urban and natural environment. Wolbachia infection was detected in all springtail samples. Consequently, phylogenies of Wolbachia and its host springtails were compared.
The role of nuclear-encoded subunits of cytochrome c oxidase in mitochondrial metabolism
Čunátová, Kristýna
Mitochondria, 'the powerhouses of the cell', house the integral metabolism pathway of oxidative phosphorylation to produce the majority of cellular energy. Mammalian cytochrome c oxidase, also called complex IV (cIV), is indispensable for the overall oxidative phosphorylation function as the terminal oxidase, and for its regulation to sustain energetic needs. Since cIV is a multimeric enzyme composed of subunits encoded by nuclear and mitochondrial genomes, its biogenesis is a complicated process, which needs to be coordinated to complete a fully functional complex. Further, the setup of individual nuclear-encoded subunits isoforms of cIV may fine-tune cIV function based on the tissue or the environment context. Despite the physiological and pathological relevance of cIV composition, biogenesis, and the secondary deficiencies triggered by cIV defects, nuclear-encoded subunits' function remains poorly understood. At first, mammalian COX4 subunit isoforms with tissue- and oxygen-dependent expression were studied in the HEK293 cellular model with an exclusive expression of COX4I1 or COX4I2 isoform. Remarkably, the COX4I2 isozyme showed lower affinity to oxygen, which may imply regulation of cIV activity under hypoxia, and is of physiological relevance for the oxygen-sensing mechanism. Further,...
The role of nuclear-encoded subunits of cytochrome c oxidase in mitochondrial metabolism
Čunátová, Kristýna ; Pecina, Petr (advisor) ; Gahura, Ondřej (referee) ; Ugalde, Cristina (referee)
Mitochondria, 'the powerhouses of the cell', house the integral metabolism pathway of oxidative phosphorylation to produce the majority of cellular energy. Mammalian cytochrome c oxidase, also called complex IV (cIV), is indispensable for the overall oxidative phosphorylation function as the terminal oxidase, and for its regulation to sustain energetic needs. Since cIV is a multimeric enzyme composed of subunits encoded by nuclear and mitochondrial genomes, its biogenesis is a complicated process, which needs to be coordinated to complete a fully functional complex. Further, the setup of individual nuclear-encoded subunits isoforms of cIV may fine-tune cIV function based on the tissue or the environment context. Despite the physiological and pathological relevance of cIV composition, biogenesis, and the secondary deficiencies triggered by cIV defects, nuclear-encoded subunits' function remains poorly understood. At first, mammalian COX4 subunit isoforms with tissue- and oxygen-dependent expression were studied in the HEK293 cellular model with an exclusive expression of COX4I1 or COX4I2 isoform. Remarkably, the COX4I2 isozyme showed lower affinity to oxygen, which may imply regulation of cIV activity under hypoxia, and is of physiological relevance for the oxygen-sensing mechanism. Further,...
The role of tissue specific isoforms of subunit 4 in assembly and function of cytochrome c oxidase
Čunátová, Kristýna ; Pecina, Petr (advisor) ; Stibůrek, Lukáš (referee)
Oxidative phosphorylation apparatus (OXPHOS) is responsible for production of majority of ATP in mammalian organisms. This process, occurring in the inner mitochondrial membrane, is partly regulated by nuclear-encoded subunits of cytochrome c oxidase (COX), the terminal enzyme of electron transport chain. Cox4 subunit, participating in OXPHOS regulation, is an early-assembly state subunit, which is necessary for incorporation of Cox2 catalytic subunit, thus for assembly of catalytically functional COX enzyme. Moreover, regulated expression of two isoforms (Cox4i1, Cox4i2) of Cox4 subunit is hypothesized to optimize respiratory chain function according to tissue oxygen supply. However, the functional impact of the isoform switch for mammalian tissues and cells is still only partly understood. In the present thesis, unique HEK293 cell line-based model with complete absence of subunit Cox4 (knock-out, KO) was prepared employing novel CRISPR CAS9-10A paired nickase technology and further characterized. Knock-out of both isoforms Cox4i1 and Cox4i2 (COX4i1/4i2 KO clones) showed general decrease of majority of Cox subunits resulting in total absence of fully assembled COX. Moreover, detected Complex I subunits as well as the content of assembled Complex I were decreased in COX4i1/4i2 KO clones. On the...
Regulation and Disorders of Mammalian Cytochrome c Oxidase
Kovářová, Nikola ; Houštěk, Josef (advisor) ; Stibůrek, Lukáš (referee) ; Kalous, Martin (referee)
Cytochrome c oxidase (COX) represents the terminal enzyme complex of respiratory chain metabolic pathway and it occurs as monomer, dimer or as a part of respiratory supercomplexes in the inner mitochondrial membrane. COX assembly process is complicated, highly regulated and depends on many ancillary proteins. Mutations in COX subunits, which are encoded by mitochondrial and nuclear DNA, or in genes encoding its assembly proteins are frequent cause of very severe mitochondrial disorders. SURF1 assembly protein participates in the first steps of COX assembly, but its exact function is not yet clarified. In humans, mutations of SURF1 gene lead to severe COX defect and fatal neurodegenerative disorder, Leigh syndrome. Knockout of SURF1 gene in mouse causes isolated COX defect as well, but less pronounced and without involvement of CNS. The aim of the thesis was detailed analysis of disturbed COX biogenesis in a condition of SURF1 gene mutations or SURF1 gene knockout, from assembly of COX monomer to interaction of COX into supercomplexes, and to the impact of isolated COX defect on other OXPHOS complexes. Mutations of SURF1 gene in patient's fibroblasts led to marked accumulation of COX assembly intermediates and to a defect in formation of functional COX monomer, which was preferentially built into an...
The role of tissue specific isoforms of subunit 4 in assembly and function of cytochrome c oxidase
Čunátová, Kristýna ; Pecina, Petr (advisor) ; Stibůrek, Lukáš (referee)
Oxidative phosphorylation apparatus (OXPHOS) is responsible for production of majority of ATP in mammalian organisms. This process, occurring in the inner mitochondrial membrane, is partly regulated by nuclear-encoded subunits of cytochrome c oxidase (COX), the terminal enzyme of electron transport chain. Cox4 subunit, participating in OXPHOS regulation, is an early-assembly state subunit, which is necessary for incorporation of Cox2 catalytic subunit, thus for assembly of catalytically functional COX enzyme. Moreover, regulated expression of two isoforms (Cox4i1, Cox4i2) of Cox4 subunit is hypothesized to optimize respiratory chain function according to tissue oxygen supply. However, the functional impact of the isoform switch for mammalian tissues and cells is still only partly understood. In the present thesis, unique HEK293 cell line-based model with complete absence of subunit Cox4 (knock-out, KO) was prepared employing novel CRISPR CAS9-10A paired nickase technology and further characterized. Knock-out of both isoforms Cox4i1 and Cox4i2 (COX4i1/4i2 KO clones) showed general decrease of majority of Cox subunits resulting in total absence of fully assembled COX. Moreover, detected Complex I subunits as well as the content of assembled Complex I were decreased in COX4i1/4i2 KO clones. On the...
Regulation and Disorders of Mammalian Cytochrome c Oxidase
Kovářová, Nikola ; Houštěk, Josef (advisor) ; Stibůrek, Lukáš (referee) ; Kalous, Martin (referee)
Cytochrome c oxidase (COX) represents the terminal enzyme complex of respiratory chain metabolic pathway and it occurs as monomer, dimer or as a part of respiratory supercomplexes in the inner mitochondrial membrane. COX assembly process is complicated, highly regulated and depends on many ancillary proteins. Mutations in COX subunits, which are encoded by mitochondrial and nuclear DNA, or in genes encoding its assembly proteins are frequent cause of very severe mitochondrial disorders. SURF1 assembly protein participates in the first steps of COX assembly, but its exact function is not yet clarified. In humans, mutations of SURF1 gene lead to severe COX defect and fatal neurodegenerative disorder, Leigh syndrome. Knockout of SURF1 gene in mouse causes isolated COX defect as well, but less pronounced and without involvement of CNS. The aim of the thesis was detailed analysis of disturbed COX biogenesis in a condition of SURF1 gene mutations or SURF1 gene knockout, from assembly of COX monomer to interaction of COX into supercomplexes, and to the impact of isolated COX defect on other OXPHOS complexes. Mutations of SURF1 gene in patient's fibroblasts led to marked accumulation of COX assembly intermediates and to a defect in formation of functional COX monomer, which was preferentially built into an...
Expression of selected defects of oxidative phosphorylation system in cultivated fibroblasts
Marková, Michaela ; Hansíková, Hana (advisor) ; Kalous, Martin (referee)
AAbbssttrraacctt:: The mammalian organism is entirely dependent on ATP production by oxidative phosphorylation system (OXPHOS) on the inner mitochondrial membrane. OXPHOS is composed of respiratory chain complexes I-IV, ATP synthase and also include two electron transporters cytochrome c and coenzyme Q. Disorders of mitochondrial energy metabolism caused by OXPHOS defects are characterized by extreme heterogeneity of clinical symptoms, variability of tissues affected and the severity of the defect at the level of individual tissues. The mitochondrial disorders are not always clearly expressed at the level of available tissue or most easily available cultured fibroblasts and/or currently available methods are not capable to detect the defects on the fibroblasts level. The aim of this master thesis was to identify by biochemical methods, especially by high sensitive polarography, OXPHOS disorders in cultured fibroblasts. Cell lines from 10 patients with isolated (SURF21, SCO1 ND1, ND5) or combined defects of OXPHOS complexes whose biochemical defect was confirmed in muscle tissue as well as 14 patients with non- mitochondrial diseases (8 patients with Huntington disease, 6 patients with disorder of sulphur amino acids metabolism) were analysed. Furthermore impact of various cultivation conditions on OXPHOS...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.