National Repository of Grey Literature 1 records found  Search took 0.01 seconds. 
Asymmetric Tandem Lithium Amide Conjugate Addition/Radical Reactions and Their Application in the Total Synthesis of Natural Products
Hidasová, Denisa ; Jahn, Ullrich (advisor) ; Kočovský, Pavel (referee) ; Míšek, Jiří (referee)
This thesis deals with single-electron transfer (SET) radical processes mediated by ferrocenium hexafluorophosphate and TEMPO and their application in the total synthesis of natural products. Asymmetric aminooxygenation methodology for the synthesis of anti-β-amino-α-hydroxy acid derivatives has been developed by utilizing a highly diastereoselective aza-Michael addition of chiral lithium amides to various α,β-unsaturated esters or amides/SET oxidation/radical α-oxygenation. The potential of this methodology was demonstrated in short total syntheses of the anti-β-amino-α-hydroxy acid fragments of the macrocyclic (depsi)peptides perthamide C and largamide H, and (-)-cytoxazone, which is a selective modulator of TH2 cytokine secretion. The SET-catalyzed asymmetric tandem lithium amide conjugate addition/5-exo radical cyclization/oxygenation reactions were applied in the synthesis of highly substituted pyrrolidines, azabicyclo[n.3.0]alkanes and spiropyrrolidines. An enantioselective total synthesis of the pyrrolidine alkaloid (-)-α-kainic acid was accomplished by employing the SET-catalyzed 5-exo radical cyclization/oxygenation.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.