National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Statistic evaluation of phylogeny of biological sequences
Vadják, Šimon ; Provazník, Ivo (referee) ; Škutková, Helena (advisor)
The master's thesis provides a comprehensive overview of resampling methods for testing the correctness topology of the phylogenetic trees which estimate the process of phylogeny on the bases of biological sequences similarity. We focused on the possibility of errors creation in this estimate and the possibility of their removal and detection. These methods were implemented in Matlab for Bootstrapping, jackknifing, OTU jackknifing and PTP test (Permutation tail probability). The work aims to test their applicability to various biological sequences and also to assess the impact of the choice of input analysis parameters on the results of these statistical tests.
Statistic evaluation of phylogeny of biological sequences
Zembol, Filip ; Provazník, Ivo (referee) ; Škutková, Helena (advisor)
The topic of my diploma thesis is the statistical evaluation of biological sequences with the help of phylogenic trees. In the theoretical part we will create a literary recherche of estimation methodology concerning the course of phylogeny on the basis of the similarity of biological sequences (DNA and proteins) and we will focus on the inaccuracies of the estimation, their causes and the possibilities of their elimination. Afterwards, we will compare the methods for the statistical evaluation of the correctness of the course of phylogeny. In the practical part of the thesis we will suggest algorithms that will be used for testing the correctness of the phylogenic trees on the basis of bootstrapping, jackknifing, OTU jackknifing and PTP test which are able to the capture phylogenic tree with the method neighbor joining from the biological sequences in FASTA code. It is also possible to change the distance model and the substitution matrix. To be able to use these algorithms for the statistical support of phylogenic trees we have to verify their right function. This verification will be evaluated on the theoretical sequences of the amino acids. For the verification of the correct function of the algorithms, we will carry out single statistical tests on real 10 sequences of mammalian ubiquitin. These results will be analysed and appropriately discussed.
Statistic evaluation of phylogeny of biological sequences
Vadják, Šimon ; Provazník, Ivo (referee) ; Škutková, Helena (advisor)
The master's thesis provides a comprehensive overview of resampling methods for testing the correctness topology of the phylogenetic trees which estimate the process of phylogeny on the bases of biological sequences similarity. We focused on the possibility of errors creation in this estimate and the possibility of their removal and detection. These methods were implemented in Matlab for Bootstrapping, jackknifing, OTU jackknifing and PTP test (Permutation tail probability). The work aims to test their applicability to various biological sequences and also to assess the impact of the choice of input analysis parameters on the results of these statistical tests.
Statistic evaluation of phylogeny of biological sequences
Zembol, Filip ; Provazník, Ivo (referee) ; Škutková, Helena (advisor)
The topic of my diploma thesis is the statistical evaluation of biological sequences with the help of phylogenic trees. In the theoretical part we will create a literary recherche of estimation methodology concerning the course of phylogeny on the basis of the similarity of biological sequences (DNA and proteins) and we will focus on the inaccuracies of the estimation, their causes and the possibilities of their elimination. Afterwards, we will compare the methods for the statistical evaluation of the correctness of the course of phylogeny. In the practical part of the thesis we will suggest algorithms that will be used for testing the correctness of the phylogenic trees on the basis of bootstrapping, jackknifing, OTU jackknifing and PTP test which are able to the capture phylogenic tree with the method neighbor joining from the biological sequences in FASTA code. It is also possible to change the distance model and the substitution matrix. To be able to use these algorithms for the statistical support of phylogenic trees we have to verify their right function. This verification will be evaluated on the theoretical sequences of the amino acids. For the verification of the correct function of the algorithms, we will carry out single statistical tests on real 10 sequences of mammalian ubiquitin. These results will be analysed and appropriately discussed.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.