National Repository of Grey Literature 6 records found  Search took 0.01 seconds. 
Electronically controllable frequency filters with current active elements
Suchánek, Tomáš ; Lattenberg, Ivo (referee) ; Kubánek, David (advisor)
The aim of the thesis is to study the possibilities of the electronic frequency ?lter com- posed of active elements operating in current mode. The main opportunities lie in the change control parameters, most are marginal or quality factor frequency. As the active elements are considered especially CC (Current Convejor), controllable current ampli?er DACA (Digitally Adjustable Current Ampli?er) or combination with the current tracker MO-CF (Multiple Output Current Follower). Another part will focus on the management of the above parameters using digital potentiometers and choosing the appropriate ?lter structure. The ?nal task was to digital control parameters using a PC and measuring its properties.
Analysis of filter structures with controllable amplifiers
Pánek, David ; Langhammer, Lukáš (referee) ; Polák, Josef (advisor)
This bachelor thesis is focused on simulations and practical realizations of already existing frequency filters with modern active components in current mode. New simulation ABM model (Analog Behavioral Model) of DACA (Digital Adjustable Current Amplifier) element was used in the simulations. The first part informs about problems concerning analogue frequency filters. The second part deals with used active components - DACA (Digital Adjustable Current Amplifier), MO-CF (Multiple Output Current Follower), BOTA (Balanced transconductance amplifier) and UCC (universal current conveyor). Four circuits have been chosen and implemented into PCB (printed circuit board) on the basis of simulation results. The first circuit tunes the quality factor with help of DACA component. The second circuit tunes the natural frequency and quality factor with help of DACA components. The third and the fourth circuits are simulated and implemented in differential and also in single ended forms. These circuits tune the natural frequency with help of the same set of current amplification by DACA components. The last part is summary of simulation’s and practical measurement‘s result of this project.
Frequency Filters with Current Active Elements
Jeřábek, Jan ; Ondráček,, Oldřich (referee) ; Kolka, Zdeněk (referee) ; Vrba, Kamil (advisor)
This doctoral thesis is focused mainly on research of new current active elements and their applications in frequency filters suitable for current-mode. Work is focused on design of new filtering structures suitable for traditional single-ended signal processing and also on structures suitable for fully-differential applications. The thesis contains three designed general conceptions of KHN-type second-order filters. Adjustability of quality factor and pole frequency is provided by controllable current amplifiers that are placed properly in designed structures. Structures also contain second-generation current conveyors, multiple-output current followers, transconductance amplifiers and their fully-differential equivalents. There are lot of possible solutions that could be obtained from general structures, some of them are presented in the work. The thesis also presents several multifunctional and also single-purpose filtering structures of second-order and two variants of n-th order synthetic elements which are suitable to realize higher order filters both in single ended and fully differential type. In each case, functionality of new solutions is verified by simulations and in several cases also by real measurement.
Analysis of filter structures with controllable amplifiers
Pánek, David ; Langhammer, Lukáš (referee) ; Polák, Josef (advisor)
This bachelor thesis is focused on simulations and practical realizations of already existing frequency filters with modern active components in current mode. New simulation ABM model (Analog Behavioral Model) of DACA (Digital Adjustable Current Amplifier) element was used in the simulations. The first part informs about problems concerning analogue frequency filters. The second part deals with used active components - DACA (Digital Adjustable Current Amplifier), MO-CF (Multiple Output Current Follower), BOTA (Balanced transconductance amplifier) and UCC (universal current conveyor). Four circuits have been chosen and implemented into PCB (printed circuit board) on the basis of simulation results. The first circuit tunes the quality factor with help of DACA component. The second circuit tunes the natural frequency and quality factor with help of DACA components. The third and the fourth circuits are simulated and implemented in differential and also in single ended forms. These circuits tune the natural frequency with help of the same set of current amplification by DACA components. The last part is summary of simulation’s and practical measurement‘s result of this project.
Frequency Filters with Current Active Elements
Jeřábek, Jan ; Ondráček,, Oldřich (referee) ; Kolka, Zdeněk (referee) ; Vrba, Kamil (advisor)
This doctoral thesis is focused mainly on research of new current active elements and their applications in frequency filters suitable for current-mode. Work is focused on design of new filtering structures suitable for traditional single-ended signal processing and also on structures suitable for fully-differential applications. The thesis contains three designed general conceptions of KHN-type second-order filters. Adjustability of quality factor and pole frequency is provided by controllable current amplifiers that are placed properly in designed structures. Structures also contain second-generation current conveyors, multiple-output current followers, transconductance amplifiers and their fully-differential equivalents. There are lot of possible solutions that could be obtained from general structures, some of them are presented in the work. The thesis also presents several multifunctional and also single-purpose filtering structures of second-order and two variants of n-th order synthetic elements which are suitable to realize higher order filters both in single ended and fully differential type. In each case, functionality of new solutions is verified by simulations and in several cases also by real measurement.
Electronically controllable frequency filters with current active elements
Suchánek, Tomáš ; Lattenberg, Ivo (referee) ; Kubánek, David (advisor)
The aim of the thesis is to study the possibilities of the electronic frequency ?lter com- posed of active elements operating in current mode. The main opportunities lie in the change control parameters, most are marginal or quality factor frequency. As the active elements are considered especially CC (Current Convejor), controllable current ampli?er DACA (Digitally Adjustable Current Ampli?er) or combination with the current tracker MO-CF (Multiple Output Current Follower). Another part will focus on the management of the above parameters using digital potentiometers and choosing the appropriate ?lter structure. The ?nal task was to digital control parameters using a PC and measuring its properties.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.