National Repository of Grey Literature 9 records found  Search took 0.00 seconds. 
Dynamic in-situ experiments utilizing probe microscopy
Patočka, Marek ; Frank, Otakar (referee) ; Kolíbal, Miroslav (advisor)
V této práci je uvedeno několik případových studií dynamických in-situ experimentů s využitím skenovací sondové mikroskopie. Nejprve je zkoumána elektrodepozice lithia v baterii s pevným elektrolytem bez kladné elektrody. Na tento experiment navazuje obdobné měření, při kterém jsou jako materiál kladné elektrody použity částice MXene. Druhá část práce se zabývá grafenem plovoucím na kapalném kovu. Je zde prezentováno zkoumání přítomnosti menisku okolo grafenových vloček.
Preparation and testing of SNOM probes
Bobek, Juraj ; Pavera, Michal (referee) ; Spousta, Jiří (advisor)
The area of research that deals with surface modification and preparation of nanostructures is still very unexplored. And only a little contribution to this field is discussed in this bachelor thesis. Its goal is to manufacture and to test a probe made off hollow optical fibre that is used in Scanning Probe Microscopy. Optical fibre parameters in combination with proper and unique techniques allow the breakthrough off very interesting applications. It's worth mentioning the gas injection in the proximity of the surface of a sample (GIS) and thus its modification by use of electrons (FEBID), ions (FIBID) or laser beams.
Application of correlative AFM/SEM microscopy
Hegrová, Veronika ; Fejfar, Antonín (referee) ; Konečný, Martin (advisor)
This thesis is dealing with application of Correlative Probe and Electron Microscopy. All measurements were carried out by atomic force microscope LiteScope which is designed especially to be combined with electron microscopes. Advantages of Correlative AFM/SEM Microscopy are demonstrated on selected samples from field of nanotechnology and material science. Application of the correlative imaging was proposed and then realized particularly in case of low-dimensional structures and thin films. Further, this thesis deals with the possibility of combining Correlative AFM/SEM Microscopy with other integrated techniques of an electron microscope such as Focused Ion Beam and Energy Dispersive X-rays Spectroscopy.
Correlated probe and electron microscopy for the study of modern magnetic nanomaterials
Novotný, Ondřej ; Flajšman, Lukáš (referee) ; Pavera, Michal (advisor)
High pressure on the development of new magnetic materials and their miniaturization also emphasizes the development of new analytical techniques. This diploma thesis deals with the development and demonstration of correlated magnetic force and electron microscopy, which is a promising tool for the characterization of magnetic nanomaterials. The first part of this thesis describes the fundamental physics of micromagnetism with a focus on cylindrical nanofibers. The following pages describe optic, probe, electron, and synchrotron methods for mapping the magnetic properties of materials. The next part describes magnetic domain wall motion in cylindrical nanowires performed as a part of a more extensive material study. The last part of the thesis describes the development of correlated magnetic force and electron microscopy on LiteScope device. A production of magnetic probes was designed and successfully tested. Probes were fabricated by focused electron beam-induced deposition from the Co2(CO)8 precursor. Further, the developed correlated microscopy is demonstrated on a multilayer PtCo sample, magnetic cylindrical nanofibers, NiFe vortex structures, and FeRh metamagnetic nano-islands.
Implementation of sample heating into atomic force microscope
Patočka, Marek ; Staňo, Michal (referee) ; Kolíbal, Miroslav (advisor)
The aim of this bachelor thesis is an implementation of a sample heating device into an atomic force microscope. The heating is performed by a Micro-Electro-Mechanical chip equipped with a heating element, which is implemented into the LiteScope microscope. The thesis describes electrical and mechanical design of the device. Proof-of-concept experiments were also conducted in order to prove functionality of the solution. Increased attention was devoted to determination of heater’s potential for use in the fields of material sciences and magnetic force microscopy.
Implementation of sample heating into atomic force microscope
Patočka, Marek ; Staňo, Michal (referee) ; Kolíbal, Miroslav (advisor)
The aim of this bachelor thesis is an implementation of a sample heating device into an atomic force microscope. The heating is performed by a Micro-Electro-Mechanical chip equipped with a heating element, which is implemented into the LiteScope microscope. The thesis describes electrical and mechanical design of the device. Proof-of-concept experiments were also conducted in order to prove functionality of the solution. Increased attention was devoted to determination of heater’s potential for use in the fields of material sciences and magnetic force microscopy.
Correlated probe and electron microscopy for the study of modern magnetic nanomaterials
Novotný, Ondřej ; Flajšman, Lukáš (referee) ; Pavera, Michal (advisor)
High pressure on the development of new magnetic materials and their miniaturization also emphasizes the development of new analytical techniques. This diploma thesis deals with the development and demonstration of correlated magnetic force and electron microscopy, which is a promising tool for the characterization of magnetic nanomaterials. The first part of this thesis describes the fundamental physics of micromagnetism with a focus on cylindrical nanofibers. The following pages describe optic, probe, electron, and synchrotron methods for mapping the magnetic properties of materials. The next part describes magnetic domain wall motion in cylindrical nanowires performed as a part of a more extensive material study. The last part of the thesis describes the development of correlated magnetic force and electron microscopy on LiteScope device. A production of magnetic probes was designed and successfully tested. Probes were fabricated by focused electron beam-induced deposition from the Co2(CO)8 precursor. Further, the developed correlated microscopy is demonstrated on a multilayer PtCo sample, magnetic cylindrical nanofibers, NiFe vortex structures, and FeRh metamagnetic nano-islands.
Application of correlative AFM/SEM microscopy
Hegrová, Veronika ; Fejfar, Antonín (referee) ; Konečný, Martin (advisor)
This thesis is dealing with application of Correlative Probe and Electron Microscopy. All measurements were carried out by atomic force microscope LiteScope which is designed especially to be combined with electron microscopes. Advantages of Correlative AFM/SEM Microscopy are demonstrated on selected samples from field of nanotechnology and material science. Application of the correlative imaging was proposed and then realized particularly in case of low-dimensional structures and thin films. Further, this thesis deals with the possibility of combining Correlative AFM/SEM Microscopy with other integrated techniques of an electron microscope such as Focused Ion Beam and Energy Dispersive X-rays Spectroscopy.
Preparation and testing of SNOM probes
Bobek, Juraj ; Pavera, Michal (referee) ; Spousta, Jiří (advisor)
The area of research that deals with surface modification and preparation of nanostructures is still very unexplored. And only a little contribution to this field is discussed in this bachelor thesis. Its goal is to manufacture and to test a probe made off hollow optical fibre that is used in Scanning Probe Microscopy. Optical fibre parameters in combination with proper and unique techniques allow the breakthrough off very interesting applications. It's worth mentioning the gas injection in the proximity of the surface of a sample (GIS) and thus its modification by use of electrons (FEBID), ions (FIBID) or laser beams.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.