National Repository of Grey Literature 12 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
Lie groups from the point of view of kinematics and applications in robotics
Kalenský, Jan ; Kureš, Miroslav (referee) ; Tomáš, Jiří (advisor)
This diploma thesis deals with the kinematic and robotic implications of Lie theory. In the introductory section, a manifold is defined as a basic element of configuration space. The main body of the thesis deals with the definition of a structure in the configuration space - Lie group. Tangent space with vector field including a structure of Lie algebra is defined to represent velocity. These two structures are connected using exponential mapping. The conclusion of the thesis focuses on fibre space, especially considering principal bundle and principal connection. Throughout the thesis, numerous examples are presented to illustrate the terms used.
Simulation of nonholonomic mechanisms’ motion
Byrtus, Roman ; Hrdina, Jaroslav (referee) ; Vašík, Petr (advisor)
Tato práce se zabývá simulacemi neholonomních mechanismů, konkrétně robotických hadů. V práci jsou uvedeny základní poznatky geometrické teorie řízení. Tyto poznatky jsou využity k odvození řídících modelů robotických systémů a následně jsou tyto modely simulovány v prostředí V-REP.
Geometrically controlled snake-like robot model
Shehadeh, Mhd Ali ; Návrat, Aleš (referee) ; Vašík, Petr (advisor)
This master’s thesis describes equations of motion for dynamic model of nonholonomic constrained system, namely the trident robotic snakes. The model is studied in the form of Lagrange's equations and D’Alembert’s principle is applied. Actually this thesis is a continuation of the study going at VUT about the simulations of non-holonomic mechanisms, specifically robotic snakes. The kinematics model was well-examined in the work of of Byrtus, Roman and Vechetová, Jana. So here we provide equations of motion and address the motion planning problem regarding dynamics of the trident snake equipped with active joints through basic examples and propose a feedback linearization algorithm.
Control Theory of robotic snakes with more than three links
Tejkal, Martin ; Návrat, Aleš (referee) ; Hrdina, Jaroslav (advisor)
The subject of this Bachelor's thesis is control theory of mechanism that simulates snake's movement. From a viewpoint of control theory the robot is classified as nonholonomic system, controllability of which is determined by vector fields. Based on nonholomic constrain a set of input vector fields is obtained from a system of nonholonomic equations. The other vector fields that are necessary for controllability of the system are derived from the set of input vector fields by application of Lie bracket operation on two input fields. This set of vector fields is further analysed in particular points of the configuration space. Finally we discuss changes that need to be done in order to describe a mechanism created by adding one, or more new links.
Control Theory of robotic snakes with missing wheels
Reichmanová, Barbora ; Vašík, Petr (referee) ; Hrdina, Jaroslav (advisor)
This thesis looks into the mathematical description of a three-sectional robot. The thesis deals with cases of wheels missing either on the middle or the last section or solely on the middle section. At first theoretical basis is mentioned including the terms such as vector and affinne space, Lie algebra, distribution or controllable system. Subsequently, there is presented formulation of equations describing a snake robot with missing wheels, solutions of equations, calculation of Lie brackets and discussion of controllability. The calculations are demonstrated on examples of various configurations of the robot.
Rigid body motion from the geometric viewpoint
Karas, Jakub ; Hrdina, Jaroslav (referee) ; Návrat, Aleš (advisor)
Cílem této práce je odvodit rovnice levo-invariantních Hamiltonovských systémů na Lieových grupách. Naše motivace je následující. Pohyb tuhého tělesa v 3D prostoru lze formulovat jako úlohu optimálního řízení na $\R^3$. Pro takto formulovanou úlohu lze využít Pontryaginův princip maxima (PMP). Nicméně pohyb tuhého tělesa lze také chápat jako úlohu na Lieově grupě SE(3). Tato úloha patří do skupiny tzv. levo-invariantních úloh. Jako další zjednodušení volíme také levo-invariantní Hamiltoniány. Běžný postup při studiu takových úloh je, že formulujeme Lagrangián této úlohy, odvodíme Hamiltonián a následně formulujeme Hamiltonovy rovnice. Náš postup je opačný. Odvodíme Hamiltonovy rovnice pro obecnou Lieovu grupu a obecný levo-invariantní Hamiltonián a následně zkoumáme, jaké typy úloh můžeme popsat volbou konkrétní Lieovy grupy a konkrétního Hamiltoniánu. Teoretické výsledky poté využijeme k vytvoření simulačního skriptu pohybu tuhého a pružného tělesa, který využije konformní geometrickou algebru (CGA) jako své výpočetní jádro. CGA je totiž nesmírně silný nástroj pro popis této problematiky, jelikož využitím CGA lze vyvinout kód, který je nezávislý na dimenzi uvažovaného prostoru bez větší námahy.
Lie groups from the point of view of kinematics and applications in robotics
Kalenský, Jan ; Kureš, Miroslav (referee) ; Tomáš, Jiří (advisor)
This diploma thesis deals with the kinematic and robotic implications of Lie theory. In the introductory section, a manifold is defined as a basic element of configuration space. The main body of the thesis deals with the definition of a structure in the configuration space - Lie group. Tangent space with vector field including a structure of Lie algebra is defined to represent velocity. These two structures are connected using exponential mapping. The conclusion of the thesis focuses on fibre space, especially considering principal bundle and principal connection. Throughout the thesis, numerous examples are presented to illustrate the terms used.
Geometrically controlled snake-like robot model
Shehadeh, Mhd Ali ; Návrat, Aleš (referee) ; Vašík, Petr (advisor)
This master’s thesis describes equations of motion for dynamic model of nonholonomic constrained system, namely the trident robotic snakes. The model is studied in the form of Lagrange's equations and D’Alembert’s principle is applied. Actually this thesis is a continuation of the study going at VUT about the simulations of non-holonomic mechanisms, specifically robotic snakes. The kinematics model was well-examined in the work of of Byrtus, Roman and Vechetová, Jana. So here we provide equations of motion and address the motion planning problem regarding dynamics of the trident snake equipped with active joints through basic examples and propose a feedback linearization algorithm.
Simulation of nonholonomic mechanisms’ motion
Byrtus, Roman ; Hrdina, Jaroslav (referee) ; Vašík, Petr (advisor)
Tato práce se zabývá simulacemi neholonomních mechanismů, konkrétně robotických hadů. V práci jsou uvedeny základní poznatky geometrické teorie řízení. Tyto poznatky jsou využity k odvození řídících modelů robotických systémů a následně jsou tyto modely simulovány v prostředí V-REP.

National Repository of Grey Literature : 12 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.