National Repository of Grey Literature 6 records found  Search took 0.01 seconds. 
Spray Cooling at High Temperatures
Chabičovský, Martin ; Čarnogurská, Mária (referee) ; Hajduk, Daniel (referee) ; Raudenský, Miroslav (advisor)
Spray cooling of hot surfaces is used in the metallurgical industry during continuous casting, hot rolling or heat treatment. The water is sprayed on the cooled surface by the nozzle which transforms the water stream to droplets. The spray cooling of hot surfaces can be characterized as forced convection with the presence of the boiling. This physically complicated process is influenced by many factors, such as impurities and contaminants in the water, water temperature, water flow rate, droplet size, droplet impact velocity, surface temperature, surface roughness or the presence of oxides (scales) on the cooled surface. The dominant factor that affects the heat transfer during the spray cooling is the water impingement density. Other factors have a smaller but also significant effect. This doctoral thesis deals with the influence of the water temperature, surface roughness and the presence of oxides on the intensity of the spray cooling. These factors are investigated by laboratory experiments in which the hot steel surface is spray cooled. Effect of the oxide layer is also investigated by the numerical simulation. The experimental results are theoretically explained and generalized using mathematical methods.
Development of a mathematical model for the prediction of the heat transfer coefficient during spray cooling of hot steel surfaces
Oberta, Brian ; Resl, Ondřej (referee) ; Chabičovský, Martin (advisor)
Spray cooling of hot surfaces is used in the metallurgical industry for continuous casting, hot rolling and heat treatment. The water is sprayed by the nozzle on the cooled surface. Physically speaking, the process of cooling can be characterized as forced convection with the presence of the boiling. The spray cooling is influenced by the factors depanding on characteristics of cooling liquid (water impingement density, water temperature, droplet size, impact velocity) and characteristics of cooled surface (surface temperature, surface roughness, presence of oxides, type of material). In the moment, there are not exact physical equation which can precisly describe the complicated process of heat transfer during spray boiling. This thesis deals with the creation of the model for prediction of the heat transfer coefficient during film boiling and the model for prediction of the Leidenfrost temperature. These models are depending on characteristics of spray cooling. The creation of the models is based on experimentaly mesured data. My created models are then compared with already published models.
Influence of the oxide layer on the cooling of steel surfaces
Resl, Ondřej ; Pohanka, Michal (referee) ; Chabičovský, Martin (advisor)
This thesis deals with the influence of the oxide layer on the spray cooling of steel surfaces. As part of the work steel samples with oxide layer are made and the thickness, porosity and surface roughness of this layer are characterized. The average thermal conductivity of porous oxide layer is determined for different regimes of oxidation. Further, the influence of the oxide layer on the heat transfer coefficient during the spray cooling is experimentally investigated on created samples and the basic numerical simulation of the cooling is done for selected experiment with oxide layer. The thesis also contains theoretical introduction to given issue.
Development of a mathematical model for the prediction of the heat transfer coefficient during spray cooling of hot steel surfaces
Oberta, Brian ; Resl, Ondřej (referee) ; Chabičovský, Martin (advisor)
Spray cooling of hot surfaces is used in the metallurgical industry for continuous casting, hot rolling and heat treatment. The water is sprayed by the nozzle on the cooled surface. Physically speaking, the process of cooling can be characterized as forced convection with the presence of the boiling. The spray cooling is influenced by the factors depanding on characteristics of cooling liquid (water impingement density, water temperature, droplet size, impact velocity) and characteristics of cooled surface (surface temperature, surface roughness, presence of oxides, type of material). In the moment, there are not exact physical equation which can precisly describe the complicated process of heat transfer during spray boiling. This thesis deals with the creation of the model for prediction of the heat transfer coefficient during film boiling and the model for prediction of the Leidenfrost temperature. These models are depending on characteristics of spray cooling. The creation of the models is based on experimentaly mesured data. My created models are then compared with already published models.
Influence of the oxide layer on the cooling of steel surfaces
Resl, Ondřej ; Pohanka, Michal (referee) ; Chabičovský, Martin (advisor)
This thesis deals with the influence of the oxide layer on the spray cooling of steel surfaces. As part of the work steel samples with oxide layer are made and the thickness, porosity and surface roughness of this layer are characterized. The average thermal conductivity of porous oxide layer is determined for different regimes of oxidation. Further, the influence of the oxide layer on the heat transfer coefficient during the spray cooling is experimentally investigated on created samples and the basic numerical simulation of the cooling is done for selected experiment with oxide layer. The thesis also contains theoretical introduction to given issue.
Spray Cooling at High Temperatures
Chabičovský, Martin ; Čarnogurská, Mária (referee) ; Hajduk, Daniel (referee) ; Raudenský, Miroslav (advisor)
Spray cooling of hot surfaces is used in the metallurgical industry during continuous casting, hot rolling or heat treatment. The water is sprayed on the cooled surface by the nozzle which transforms the water stream to droplets. The spray cooling of hot surfaces can be characterized as forced convection with the presence of the boiling. This physically complicated process is influenced by many factors, such as impurities and contaminants in the water, water temperature, water flow rate, droplet size, droplet impact velocity, surface temperature, surface roughness or the presence of oxides (scales) on the cooled surface. The dominant factor that affects the heat transfer during the spray cooling is the water impingement density. Other factors have a smaller but also significant effect. This doctoral thesis deals with the influence of the water temperature, surface roughness and the presence of oxides on the intensity of the spray cooling. These factors are investigated by laboratory experiments in which the hot steel surface is spray cooled. Effect of the oxide layer is also investigated by the numerical simulation. The experimental results are theoretically explained and generalized using mathematical methods.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.