National Repository of Grey Literature 7 records found  Search took 0.01 seconds. 
Preparation and characterization of vesiculin, a two-chain protein derived from IGF-2
Mrzílková, Karolína ; Žáková, Lenka (advisor) ; Pačesová, Andrea (referee)
Hormones of insulin family are one of the most studied groups of proteins due to their connection to large number of diseases including type two diabetes mellitus, tumorigenesis and some neurodegenerative diseases. The newest member of this superfamily is a two-chain analogue of IGF-2 called vesiculin. This peptide was originally isolated from secretory granules of mouse βTC6-F7 cell line and is currently believed to have a endocrine or paracrine effect on pancreatic β-cells. Its sequence homology with IGF-2 and structural similarity to insulin foreshadows vesiculin's potential metabolic, proliferation and growth properties and further secures its place as scientifically interesting and clinically lucrative topic. The insulin theme is corelated with insulin resistance, pathological state present primarily in early stages of development of type two diabetes mellitus. Vesiculin is able to stimulate glucose uptake and glycogen synthesis even in this condition which differentiates it form insulin and IGF-2 whose glucoregulatory activity is blunted in face of insulin resistance. Further research of vesiculin and insulin family receptor interaction, including dimeric tyrosinekinase receptor for IGF-1 and insulin, but also monomeric IGF-2 receptor, can provide more knowledge on character of this binding...
Analogues of IGF-1 for the study of interactions of the hormone with the receptors for IGF-1 and insulin
Macháčková, Kateřina ; Jiráček, Jiří (advisor) ; Obšilová, Veronika (referee) ; Šulc, Miroslav (referee)
Insulin/IGF system is a complex network of three similar hormones (insulin, IGF-1 and IGF-2) and their three similar receptors (IR-A, IR-B and IGF-1R,), which play important roles in maintaining basal energy homeostasis of the organism, in growth, development, life-span but also in development of diseases such as diabetes mellitus, cancer, acromegaly or Laron dwarfism. Despite structural similarities between family members, each member have its unique role in the system. Identification of structural determinants in insulin and IGFs that trigger their specific signalling pathways is important for rational drug design for safer treatment of diabetes or for more efficient combating of cancer or growth-related disorders. In this thesis, we focused on identification of such structural determinants in IGF-1. Comparison of our data with parallel studies with IGF-2 and insulin could give a more complex picture of the problem. First of all, we developed necessary methodologies for the preparation of IGF-1 analogues. We developed a new methodology for the total chemical synthesis of IGF-1 analogues based on the solid-phase synthesis of fragments and their ligation by a CuI -catalyzed cycloaddition of azides and alkynes. In parallel, we developed a procedure for a recombinant production of IGF- 1 and its...
The preparation and characterisation of analogues of insulin and IGF-2 selective for both isoform of insulin receptor and IGF-1 receptor
Mlčochová, Květoslava ; Žáková, Lenka (advisor) ; Obšil, Tomáš (referee) ; Šulc, Miroslav (referee)
Insulin and insulin-like growth factor 1 (IGF-1) and 2 (IGF-2) are related protein hormones with different but overlapping biological functions. All the hormones interact with a receptor within the insulin-IGF system (insulin receptor A and B, IGF-1 receptor), however with different affinity. The different interaction with individual receptors is just one of the main tools for regulation of the system that is essential for the proper functioning of the organism. Although the residues directly interacting with receptors are mainly located in A and B domains, the C and D domains probably play a role in receptor specificity. Here, we firstly focused on the impact of D domains of IGF-1 and 2 (D1 and D2 domains) and C domain of IGF- 2 (C2 domain). To probe the impact of C and D domains, we prepared insulin analogues containing a part of or an entire domain following a pattern seen in IGFs. The receptor-binding affinities of these analogues and their receptor autophosphorylation potentials were characterised. Our results revealed that the initial part of D1 domain has a detrimental effect on IR affinity that is only slightly enhanced by the rest of the D1 domain. D2 domain has rather neutral effect on IR affinity. We further showed that the addition of amino acids derived from the C2 domain to the...
Analogues of IGF-1 for the study of interactions of the hormone with the receptors for IGF-1 and insulin
Macháčková, Kateřina
Insulin/IGF system is a complex network of three similar hormones (insulin, IGF-1 and IGF-2) and their three similar receptors (IR-A, IR-B and IGF-1R,), which play important roles in maintaining basal energy homeostasis of the organism, in growth, development, life-span but also in development of diseases such as diabetes mellitus, cancer, acromegaly or Laron dwarfism. Despite structural similarities between family members, each member have its unique role in the system. Identification of structural determinants in insulin and IGFs that trigger their specific signalling pathways is important for rational drug design for safer treatment of diabetes or for more efficient combating of cancer or growth-related disorders. In this thesis, we focused on identification of such structural determinants in IGF-1. Comparison of our data with parallel studies with IGF-2 and insulin could give a more complex picture of the problem. First of all, we developed necessary methodologies for the preparation of IGF-1 analogues. We developed a new methodology for the total chemical synthesis of IGF-1 analogues based on the solid-phase synthesis of fragments and their ligation by a CuI -catalyzed cycloaddition of azides and alkynes. In parallel, we developed a procedure for a recombinant production of IGF- 1 and its...
The preparation and characterisation of analogues of insulin and IGF-2 selective for both isoform of insulin receptor and IGF-1 receptor
Mlčochová, Květoslava ; Žáková, Lenka (advisor) ; Obšil, Tomáš (referee) ; Šulc, Miroslav (referee)
Insulin and insulin-like growth factor 1 (IGF-1) and 2 (IGF-2) are related protein hormones with different but overlapping biological functions. All the hormones interact with a receptor within the insulin-IGF system (insulin receptor A and B, IGF-1 receptor), however with different affinity. The different interaction with individual receptors is just one of the main tools for regulation of the system that is essential for the proper functioning of the organism. Although the residues directly interacting with receptors are mainly located in A and B domains, the C and D domains probably play a role in receptor specificity. Here, we firstly focused on the impact of D domains of IGF-1 and 2 (D1 and D2 domains) and C domain of IGF- 2 (C2 domain). To probe the impact of C and D domains, we prepared insulin analogues containing a part of or an entire domain following a pattern seen in IGFs. The receptor-binding affinities of these analogues and their receptor autophosphorylation potentials were characterised. Our results revealed that the initial part of D1 domain has a detrimental effect on IR affinity that is only slightly enhanced by the rest of the D1 domain. D2 domain has rather neutral effect on IR affinity. We further showed that the addition of amino acids derived from the C2 domain to the...
Analogues of IGF-1 for the study of interactions of the hormone with the receptors for IGF-1 and insulin
Macháčková, Kateřina
Insulin/IGF system is a complex network of three similar hormones (insulin, IGF-1 and IGF-2) and their three similar receptors (IR-A, IR-B and IGF-1R,), which play important roles in maintaining basal energy homeostasis of the organism, in growth, development, life-span but also in development of diseases such as diabetes mellitus, cancer, acromegaly or Laron dwarfism. Despite structural similarities between family members, each member have its unique role in the system. Identification of structural determinants in insulin and IGFs that trigger their specific signalling pathways is important for rational drug design for safer treatment of diabetes or for more efficient combating of cancer or growth-related disorders. In this thesis, we focused on identification of such structural determinants in IGF-1. Comparison of our data with parallel studies with IGF-2 and insulin could give a more complex picture of the problem. First of all, we developed necessary methodologies for the preparation of IGF-1 analogues. We developed a new methodology for the total chemical synthesis of IGF-1 analogues based on the solid-phase synthesis of fragments and their ligation by a CuI -catalyzed cycloaddition of azides and alkynes. In parallel, we developed a procedure for a recombinant production of IGF- 1 and its...
Analogues of IGF-1 for the study of interactions of the hormone with the receptors for IGF-1 and insulin
Macháčková, Kateřina ; Jiráček, Jiří (advisor) ; Obšilová, Veronika (referee) ; Šulc, Miroslav (referee)
Insulin/IGF system is a complex network of three similar hormones (insulin, IGF-1 and IGF-2) and their three similar receptors (IR-A, IR-B and IGF-1R,), which play important roles in maintaining basal energy homeostasis of the organism, in growth, development, life-span but also in development of diseases such as diabetes mellitus, cancer, acromegaly or Laron dwarfism. Despite structural similarities between family members, each member have its unique role in the system. Identification of structural determinants in insulin and IGFs that trigger their specific signalling pathways is important for rational drug design for safer treatment of diabetes or for more efficient combating of cancer or growth-related disorders. In this thesis, we focused on identification of such structural determinants in IGF-1. Comparison of our data with parallel studies with IGF-2 and insulin could give a more complex picture of the problem. First of all, we developed necessary methodologies for the preparation of IGF-1 analogues. We developed a new methodology for the total chemical synthesis of IGF-1 analogues based on the solid-phase synthesis of fragments and their ligation by a CuI -catalyzed cycloaddition of azides and alkynes. In parallel, we developed a procedure for a recombinant production of IGF- 1 and its...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.