National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Yeast isogenic system as a method for study of IFI16 protein interactions with DNA
Kratochvilová, Libuše ; Šedrlová, Zuzana (referee) ; Brázda, Václav (advisor)
This bachelor thesis deals with the binding of interferon gamma-induced protein 16 (IFI16) to the secondary local structures of the G-quadruplex (G4) and its mutations in the single-hybrid yeast system (Y1H). The IFI16 protein in the cell recognizes its own and foreign or damaged DNA, is involved in the formation of the inflammasome and induces the expression of type I interferon (IFN-I). It is also involved in the regulation of transcription and restriction of viral infection. It has been shown that the IFI16 protein binds preferentially to G-quadruplex structures and is able to stabilize them by this binding. G-quadruplexes are classified as non-canonical DNA and RNA structures formed by G-rich sequences. They are easily formed under physiological conditions and are found in a number of important regulatory structures of the genome such as telomeres or oncogene promoters. They are also part of a number of viral genomes. This makes them excellent potential targets in the treatment of cancer and viral diseases. In the first part of the work, new reporter strains of S. cerevisiae yeasts were prepared by the Delitto Perfetto method, differing only in sequence with the potential for G-quadruplex formation, which was designed and analyzed by the DNA Analyzer program. The correctness of the inserted sequences was verified by PCR and Sanger sequencing and comparison with the supplied oligonucleotide sequences by the Blast program. In the second part of the work, the newly prepared strains were transformed with vectors for the expression of p53, IFI16 proteins, and the effect of IFI16-G4 binding on the expression of the gene in connection with the tumor suppressor p53 was assessed using luciferase reporter assays. The evaluation was performed on the basis of a statistical analysis of the magnitudes of the effects obtained after normalization of the luminescence signal on the optical density of the culture at a wavelength of 600 nm. The results show that the IFI16 protein has a different effect on the trans-activation potential of the p53 tumor suppressor depending on binding to emerging structures near the reporter gene promoter, and that a G4Hunter threshold of at least 1,591 had to be reached and taken into account to successfully form a G-quadruplex the potential of the sequence to successfully form at least 2 G-tetrads.
Analysis of IFI16 protein binding to DNA
Kratochvilová, Libuše ; Smetana, Jan (referee) ; Brázda, Václav (advisor)
This diploma thesis deals with the binding of interferon gamma-inducible protein 16 (IFI16) to DNA with the potential of G-quadruplex formation. The IFI16 protein contains two tandemly located DNA-binding HIN domains showing differential binding to DNA structures. IFI16 protein has been shown to preferentially bind G-quadruplex structures over other nucleic acid secondary structures. G-quadruplexes are secondary local structures of DNA (or RNA) that are easily formed under physiological conditions in a number of important regulatory regions of the genome, or are part of the genomes of a number of viruses and pathogens. The ability to recognize, specifically bind and stabilize G-quadruplex structures explains the involvement of the IFI16 protein in the cellular processes of replication, transcription and translation and the establishment of innate immune responses. In the first part of the thesis, the sequences of synthetic oligonucleotides with the potential for G-quadruplex formation were characterized by selected biophysical methods and the full-length IFI16 protein was isolated, which was subsequently used for in vitro binding and competitive binding experiments with characterized oligonucleotides. In the last part of the work, isogenic yeast strains differing in the sequences of the responsive element were transformed with plasmid vectors for the expression of p53 and IFI16 proteins with constitutive and GAL inducible promoters, and the one-hybrid yeast system model was optimized for the study of IFI16 protein interactions in vivo. The results show that most of the analyzed sequences are able to form G-quadruplex structures in vitro, even in the presence of only one run of three or more G-bases. While the presence of several G-runs separated by a single nucleotide spacer led to the formation of intermolecular G-quadruplex structures, mutation in the original G-quadruplex sequence induced the formation of intramolecular structures with different conformations. In vitro binding and competitive binding experiments demonstrated specific binding of the IFI16 protein to G-quadruplex structures without differences in protein binding preference to a particular G-quadruplex conformation. Stabilization of G-quadruplex structures in vivo behind the transcription factor responsive element (p53) in the gene promoter induced repression of the transcription of the given gene. In the absence of any binding site of the IFI16 protein, a protein-protein interaction between the IFI16 and p53 proteins occurred, which led to an increase in the transactivation potential of the p53 protein, while the binding of the p53 protein and initiation of reporter gene transcription was influenced not only by the presence of the G-quadruplex motif and its stabilization, but and the DNA sequence adjacent to the p53 responsive element.
Negative regulation of the IFI16 and cGAS DNA sensing pathways
Muhič, Samra ; Huerfano Meneses, Sandra (advisor) ; Kanwal, Madiha (referee)
DNA sensors are molecules with the ability to sense DNA constituting an important tool of innate immunity. They are initiators of various signalling pathways, one of them being the production of interferons, which induce not only an anti-viral cell state but also protect cells of treats not related to pathogens. At least, fourteen DNA sensors have been described so far, among them - IFI16 and cGAS. Both sensors signal via an adaptor protein STING resulting in the production of type I IFN. All three of these molecules (cGAS, IFI16, STING) are strictly regulated either by host-cells in order to prevent immune over-activation or by viruses for the immune evasion. This work focuses on the mechanisms of negative regulation of the three molecules: post-translational modifications such as phosphorylation, ubiquitination, SUMOylation, acetylation and methylation; protein-protein interactions; degradation by the proteasomal system or by autophagy. Not surprisingly, viruses encode proteins able to down-regulate IFN responses for example, some proteins of herpes viruses interact with cGAS, IFI16 or STING preventing their activation or leading to their degradation. Other proteins of herpes viruses cause the degradation of the mRNA of the sensors or the adaptor. Dengue protease factor NS2B degrades cGAS or the...
Sensing of MPyV infection by innate immunity sensors
Rjabčenko, Boris ; Forstová, Jitka (advisor) ; Anděra, Ladislav (referee) ; Mělková, Zora (referee)
Host sensors that recognize pathogen associated molecular patterns and the mechanisms of innate immune response to mouse polyomavirus (MPyV) infection were the main topics of current work. We found that MPyV did not induce interferon (IFN) production during early events of infection, but induced interleukin-6 (IL-6) and other cytokine production without inhibiting virus multiplication. Cytokine microenvironment changed the phenotype of adjacent non infected fibroblasts toward the cancer-associated fibroblast (CAF)-like phenotype. We identified Toll-like receptor 4, a sensor of the innate immunity system, to be responsible for infection dependent IL-6 production. In an effort to determine whether and where virions are released from endosomal compartments into the cytosol, we found that the hydrophobic domains of minor capsid proteins, exposed on the surface of virions after their partial disassembly in the ER, play an important role in effective escape of virions from the lumen part of endoplasmic reticulum into the cytosol, Although naked, partially disassembled virions appear before translocation to the nucleus in the cytosol, viral DNA is not recognized by cytosolic sensors at this phase of infection Sensing of MPyV resulting in IFN production occurs first during viral replication. Mutant virus,...
Yeast isogenic system as a method for study of IFI16 protein interactions with DNA
Kratochvilová, Libuše ; Šedrlová, Zuzana (referee) ; Brázda, Václav (advisor)
This bachelor thesis deals with the binding of interferon gamma-induced protein 16 (IFI16) to the secondary local structures of the G-quadruplex (G4) and its mutations in the single-hybrid yeast system (Y1H). The IFI16 protein in the cell recognizes its own and foreign or damaged DNA, is involved in the formation of the inflammasome and induces the expression of type I interferon (IFN-I). It is also involved in the regulation of transcription and restriction of viral infection. It has been shown that the IFI16 protein binds preferentially to G-quadruplex structures and is able to stabilize them by this binding. G-quadruplexes are classified as non-canonical DNA and RNA structures formed by G-rich sequences. They are easily formed under physiological conditions and are found in a number of important regulatory structures of the genome such as telomeres or oncogene promoters. They are also part of a number of viral genomes. This makes them excellent potential targets in the treatment of cancer and viral diseases. In the first part of the work, new reporter strains of S. cerevisiae yeasts were prepared by the Delitto Perfetto method, differing only in sequence with the potential for G-quadruplex formation, which was designed and analyzed by the DNA Analyzer program. The correctness of the inserted sequences was verified by PCR and Sanger sequencing and comparison with the supplied oligonucleotide sequences by the Blast program. In the second part of the work, the newly prepared strains were transformed with vectors for the expression of p53, IFI16 proteins, and the effect of IFI16-G4 binding on the expression of the gene in connection with the tumor suppressor p53 was assessed using luciferase reporter assays. The evaluation was performed on the basis of a statistical analysis of the magnitudes of the effects obtained after normalization of the luminescence signal on the optical density of the culture at a wavelength of 600 nm. The results show that the IFI16 protein has a different effect on the trans-activation potential of the p53 tumor suppressor depending on binding to emerging structures near the reporter gene promoter, and that a G4Hunter threshold of at least 1,591 had to be reached and taken into account to successfully form a G-quadruplex the potential of the sequence to successfully form at least 2 G-tetrads.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.