National Repository of Grey Literature 5 records found  Search took 0.00 seconds. 
Enzymatic hydrolysis of wastes associated with coffee production
Kovářová, Markéta ; Skoumalová, Petra (referee) ; Obruča, Stanislav (advisor)
This bachelor thesis is focused on study of potential production of extracellular hydrolytic enzymes by microorganisms – bacterium and moulds, which have been cultivated on spent coffee grounds. The theoretical part deals with characterization of coffee and utilization of coffee by-products. There are also subscribed microorganisms and enzymes which have been noticed. In experimental part coffee ground was used as the sole substrate for production of extracellular hydrolytic enzymes. Productions of protease, cellulase, mannase and lipase enzymes were observed. None-identified isolate of mould spontaneously contaminating spent coffee grounds was identified as the best producer of these enzymes. Subsequently the conditions of cultivation such as water content and shaking vs. static cultivation of this moulds were optimized. Further, we performed partial purification and pre-concentration of the enzyme cocktail by ultrafiltration, ultradialysis and PAGE-SDS characterization of extracellular enzymes was performed as well.
Production and characteritzation of extracellular hydrolases from selected moulds
Skoumalová, Petra ; Čarnecká, Martina (referee) ; Márová, Ivana (advisor)
This diploma thesis is focused on study of potential production of extracellular hydrolytic enzymes. The theoretical part deals with characterization of selected hydrolytic enzymes, their catalytic properties, the possibility of extracellular hydrolase production by fungi and their applications. In experimental part production strains Aureobasidium pullulans, Fusarium solani and Phanerochaete chrysosporium were used. Productions of cellulase, amylase, xylanase, lipase, protease and lignin-degraded enzymes (laccase, manganese- dependent peroxidase, lignin peroxidase) were observed. Cultivations were carried out in submersed mode in mineral medium supplemented by waste co-substrates such as wheat bran, corn bran, rice bran and oat bran, sawdust, rice, apple fiber, egg pasta and egg-free pasta. Production of enzymes depended on the substrate type and time of cultivation. The highest cellulase, xylanase and amylase activities were measured in the first period of cultivation (3 to 7 day). Lignin-degraded enzymes and proteases were produced at the end of cultivation (7 to 10 days). Lipolytic activity was detected only in A. pullulans, where the activity increased with time of cultivation. The highest value was determined during cultivation on wheat bran (3.6 nmol/ml.min). The highest xylanase and celulase activity (170.3 nmol/ml.min, 248.0 nmol/ml.min) were determined during cultivation of F. solani on corn bran. The highest amylase activity (111.8 nmol/ml.min) was reported in P. chrysosporium during the cultivation on rice. The highest protease activity (68.0 nmol/ml.min) was determined in F. solani grown on wheat bran. The best producer of laccase was A. pullulans, the highest production was recorded for egg-free pasta (27.0 nmol/ml.min). The maximum lignin peroxidase activity (12.5 nmol/ml.min) was measured during the cultivation of F. solani on egg pasta, while the highest yield of Mn-dependent peroxidase (7.7 nmol/ml.min) was achieved during the cultivation of A. pullulans on wheat bran. Lignin-degraded enzymes behaved as inductive, while the other enzymes were produced in mineral medium too. Activity of cellulase in the mineral medium was in A. pullulans strain higher than in media with waste substrates. Enzymes produced into A. pullulans medium were purified by ultrafiltration, ion exchange chromatography and gel filtration.
Detekce patogenů lilku bramboru přežívajících v půdě
Valkovičová, Nikola
The bachelor's thesis dealt with the detection and sequencing of soil-borne pathogens of pota-to eggplant. The focus is mainly on pathogens of the genus Fusarium. These pathogens cause such potato rot, which forms white mycelium coatings and subsequently mummifies, that it is not suitable for consumption and the yield is reduced. One of the most accurate methods was chosen for the detection of pathogens – PCR. For the detection of Fusarium pathogens from other potato tubers, conventional PCR was used with non-specific primers ITS4 and ITS5 annealing to the region between the genes that code for ITS4 and ITS5 RNA. For the detection of pathogens from the soil, real–time PCR was chosen with primers ITS1F and AFP346 sitting in the region that encode nRNA and space bars ITS1 and ITS2. The tested soil was artificially inoculated with an unknown isolate of the genus Fusarium obtained from a potato tuber and a collection isolate of Fusarium solani var. coeruleum. Se-quencing confirmed infection of the potato tuber with Fusarium culmorum, clarifying the dif-ficulty of quantification.
Production and characteritzation of extracellular hydrolases from selected moulds
Skoumalová, Petra ; Čarnecká, Martina (referee) ; Márová, Ivana (advisor)
This diploma thesis is focused on study of potential production of extracellular hydrolytic enzymes. The theoretical part deals with characterization of selected hydrolytic enzymes, their catalytic properties, the possibility of extracellular hydrolase production by fungi and their applications. In experimental part production strains Aureobasidium pullulans, Fusarium solani and Phanerochaete chrysosporium were used. Productions of cellulase, amylase, xylanase, lipase, protease and lignin-degraded enzymes (laccase, manganese- dependent peroxidase, lignin peroxidase) were observed. Cultivations were carried out in submersed mode in mineral medium supplemented by waste co-substrates such as wheat bran, corn bran, rice bran and oat bran, sawdust, rice, apple fiber, egg pasta and egg-free pasta. Production of enzymes depended on the substrate type and time of cultivation. The highest cellulase, xylanase and amylase activities were measured in the first period of cultivation (3 to 7 day). Lignin-degraded enzymes and proteases were produced at the end of cultivation (7 to 10 days). Lipolytic activity was detected only in A. pullulans, where the activity increased with time of cultivation. The highest value was determined during cultivation on wheat bran (3.6 nmol/ml.min). The highest xylanase and celulase activity (170.3 nmol/ml.min, 248.0 nmol/ml.min) were determined during cultivation of F. solani on corn bran. The highest amylase activity (111.8 nmol/ml.min) was reported in P. chrysosporium during the cultivation on rice. The highest protease activity (68.0 nmol/ml.min) was determined in F. solani grown on wheat bran. The best producer of laccase was A. pullulans, the highest production was recorded for egg-free pasta (27.0 nmol/ml.min). The maximum lignin peroxidase activity (12.5 nmol/ml.min) was measured during the cultivation of F. solani on egg pasta, while the highest yield of Mn-dependent peroxidase (7.7 nmol/ml.min) was achieved during the cultivation of A. pullulans on wheat bran. Lignin-degraded enzymes behaved as inductive, while the other enzymes were produced in mineral medium too. Activity of cellulase in the mineral medium was in A. pullulans strain higher than in media with waste substrates. Enzymes produced into A. pullulans medium were purified by ultrafiltration, ion exchange chromatography and gel filtration.
Enzymatic hydrolysis of wastes associated with coffee production
Kovářová, Markéta ; Skoumalová, Petra (referee) ; Obruča, Stanislav (advisor)
This bachelor thesis is focused on study of potential production of extracellular hydrolytic enzymes by microorganisms – bacterium and moulds, which have been cultivated on spent coffee grounds. The theoretical part deals with characterization of coffee and utilization of coffee by-products. There are also subscribed microorganisms and enzymes which have been noticed. In experimental part coffee ground was used as the sole substrate for production of extracellular hydrolytic enzymes. Productions of protease, cellulase, mannase and lipase enzymes were observed. None-identified isolate of mould spontaneously contaminating spent coffee grounds was identified as the best producer of these enzymes. Subsequently the conditions of cultivation such as water content and shaking vs. static cultivation of this moulds were optimized. Further, we performed partial purification and pre-concentration of the enzyme cocktail by ultrafiltration, ultradialysis and PAGE-SDS characterization of extracellular enzymes was performed as well.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.