National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Visual Representation of Pi-Calculus Expressions
Prokopová, Dagmar ; Křivka, Zbyněk (referee) ; Rychlý, Marek (advisor)
This work deals with the problem of visual representation of Pi-calculus expressions. The theoretical part of this paper discusses general principles of process algebras as well as specific properties of individual models, with a focus on Pi-calculus. Also included is the comparison of several text and graphical representations of expressions. The main part of the thesis deals with the design and implementation of an application for converting text representation of expressions into graphical representation. In addition to the text and graphical representation, an internal tree representation designed to work with expressions within the application is also proposed. The thesis also describes algorithms for finding feasible reductions, performing reductions and expression simplification that operate with the proposed tree representation.
Formal-based Component Model with Support of Mobile Architecture
Rychlý, Marek
In the thesis, we propose an approach to modelling of component-based systems and formal description of their behaviour. The approach is based on a novel component model defined by a metamodel in a logical view and by description in the pi-calculus in a process view. We show that the component model addresses the dynamic aspects of software architectures including the component mobility. Furthermore, we propose a method of behavioural modelling of service-oriented architectures to pass smoothly from service level to component level and to describe behaviour of a whole system, services and components, as a single pi-calculus process. Finally, we illustrate an application of our approach on a case study of an environment for functional testing of complex safety-critical systems. The support of dynamic architecture and the integration with service-oriented architecture compromise the main advantages of our approach.
Visual Representation of Pi-Calculus Expressions
Prokopová, Dagmar ; Křivka, Zbyněk (referee) ; Rychlý, Marek (advisor)
This work deals with the problem of visual representation of Pi-calculus expressions. The theoretical part of this paper discusses general principles of process algebras as well as specific properties of individual models, with a focus on Pi-calculus. Also included is the comparison of several text and graphical representations of expressions. The main part of the thesis deals with the design and implementation of an application for converting text representation of expressions into graphical representation. In addition to the text and graphical representation, an internal tree representation designed to work with expressions within the application is also proposed. The thesis also describes algorithms for finding feasible reductions, performing reductions and expression simplification that operate with the proposed tree representation.
Formal-based Component Model with Support of Mobile Architecture
Rychlý, Marek
In the thesis, we propose an approach to modelling of component-based systems and formal description of their behaviour. The approach is based on a novel component model defined by a metamodel in a logical view and by description in the pi-calculus in a process view. We show that the component model addresses the dynamic aspects of software architectures including the component mobility. Furthermore, we propose a method of behavioural modelling of service-oriented architectures to pass smoothly from service level to component level and to describe behaviour of a whole system, services and components, as a single pi-calculus process. Finally, we illustrate an application of our approach on a case study of an environment for functional testing of complex safety-critical systems. The support of dynamic architecture and the integration with service-oriented architecture compromise the main advantages of our approach.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.