National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Bacterial components in experimental intestinal inflammation prevention and therapy
Kverka, Miloslav ; Tlaskalová - Hogenová, Helena (advisor) ; Šedivá, Anna (referee) ; Stříž, Ilja (referee)
Although strong protective immune response is essential for preventing invasion by pathogens, equivalent responses against antigens originating from commensal bacteria can lead to chronic inflammatory diseases, such as inflammatory bowel disease (IBD). Manipulating the mucosal immune responses with microbial antigens might be an excellent tool to IBD therapy or prevention. Our aim was to gain some insight into the regulation of the intestinal inflammation and to isolate bacterial immunomodulatory components that could be used in intestinal inflammation therapy and prevention. One particular mechanism of how healthy colon tissue regulates the inflammation during acute experimental colitis is through modulation of bioavailability of glucocorticoids (GCs) in gut mucosa. Here, we show that intestinal inflammation changes the local GC metabolism, which ultimately leads to decrease in inflammatory readiness of cells in the gut mucosa and in mesenteric lymph nodes. This pre-receptor regulation of GC function could represent an important homeostatic function of the gut mucosa. The actual triggers of intestinal inflammation in IBD seem to be either microbial dysbiosis or microbes with special "pathogenic" abilities, which both could be rectified by feeding with probiotics. Here, we report that oral feeding with live...
The effects of bacterial lysates on the gut barrier function and microbiota composition
Zákostelská, Zuzana ; Tlaskalová - Hogenová, Helena (advisor) ; Prokešová, Ludmila (referee) ; Rada, Vojtěch (referee)
Dynamic molecular interactions between the microbiota and the intestinal mucosa play an important role in the establishment and maintenance of mucosal homeostasis. Aberrant host- microbiota interaction could lead to many diseases such as inflammatory bowel disease. The aim of our study was to evaluate the commensal and probiotic bacteria activities and their ability to induce pathological or exert beneficial effects. The most important trigger for immune system development is an exposure to microbial components. Here, we show that there is a time window at about three weeks of age, which enables the artificial colonization of germ free mice by a single oral dose of cecal content. The delayed colonization by either inoculation or co-housing causes permanent changes in immune system reactivity, which may downgrade the results of experiments performed on first generation of colonized animals. In this thesis we report that even non-living commensal bacteria such as Parabacteroides distasonis (mPd) or well known probiotics such as L. casei DN-114 001 (Lc) possess anti-inflammatory effects in experimental model of colitis. The mechanisms that this effect is achieved by the lysate of L. casei DN-114 001 comprise: a) improvement in the gut barrier function, b) correction of the dysbiosis, and c) modulation of the...
Bacterial components in experimental intestinal inflammation prevention and therapy
Kverka, Miloslav ; Tlaskalová - Hogenová, Helena (advisor) ; Šedivá, Anna (referee) ; Stříž, Ilja (referee)
Although strong protective immune response is essential for preventing invasion by pathogens, equivalent responses against antigens originating from commensal bacteria can lead to chronic inflammatory diseases, such as inflammatory bowel disease (IBD). Manipulating the mucosal immune responses with microbial antigens might be an excellent tool to IBD therapy or prevention. Our aim was to gain some insight into the regulation of the intestinal inflammation and to isolate bacterial immunomodulatory components that could be used in intestinal inflammation therapy and prevention. One particular mechanism of how healthy colon tissue regulates the inflammation during acute experimental colitis is through modulation of bioavailability of glucocorticoids (GCs) in gut mucosa. Here, we show that intestinal inflammation changes the local GC metabolism, which ultimately leads to decrease in inflammatory readiness of cells in the gut mucosa and in mesenteric lymph nodes. This pre-receptor regulation of GC function could represent an important homeostatic function of the gut mucosa. The actual triggers of intestinal inflammation in IBD seem to be either microbial dysbiosis or microbes with special "pathogenic" abilities, which both could be rectified by feeding with probiotics. Here, we report that oral feeding with live...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.