National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Evolutionary dynamics of satellite DNA in plant genomes
ÁVILA ROBLEDILLO, Laura
Satellite DNA (satDNA) belongs to the highly repetitive fraction of eukaryotic genomes. It is best characterized by the formation of long arrays of almost identical sequences that are tandemly repeated. These repeats are widely distributed in plant species where they can make up a substantial proportion of their genomes. Despite the long history of satDNA research, the classic methodology did not allow for its comprehensive characterization. Consequently, the fragmentary information gathered during the last 60 years does not answer the many questions surrounding the evolution of these elements. The development of new techniques in sequencing, together with the availability of new bioinformatics tools for analyzing different genome fractions, has presented an opportunity to advance studies of tandem repeats. This thesis describes the landscape characterization of satDNA in the genome of Fabeae species by exploring the diversity of satDNA within a genome, the association of these elements with functional centromeres, as well as their genome-wide organization. We employed new computational pipelines specifically designed for the analysis of tandem repeats from next generation sequencing data, and combined their results with molecular and cytogenetic methods to achieve comprehensive characterization of the satellite repeats.
Peak identification from ChIP-nexus data.
Drahoňovská, Lucie ; Převorovský, Martin (advisor) ; Gahurová, Lenka (referee)
Proteins play a very important role in live organisms. Their roles are for example structural, transport, regulatory or catalytic. What genes will be expressed, what proteins will be made and at what rate can have a strong impact on the function or even health of the organism. Gene expression is significantly regulated by transcription factors, whose activity may cause multiple diseases or disorders (Latchman 1997). Studying those factors and their function is therefore very important. Several methods were developed to this cause, ChIP-chip, ChIP-seq, ChIP-exo and ChIP-nexus. They enable us to study the binding sites of transcription factors and other DNA-binding proteins with various degrees of resolution. In this thesis I am going to describe the above mentioned methods and peak callers, softwares used for analysis of data obtained by those methods. I will also attempt to do peak calling of ChIP-nexus data of Cbf11 protein and compare the outcomes.
The use of parallel sequencing methods in microbiology.
Pavlíková, Magdaléna ; Najmanová, Lucie (advisor) ; Vopálenský, Václav (referee)
The thesis describes the history of development of sequencing methods with special focus on the modern effective parallel sequencing methods and their application in microbiology. The development and improvements of sequencing systems lead to the acceleration of the process and considerable decrease of price, which consequently allow wider spectrum of applications. Each of the sequencing systems has its characteristic features including drawbacks stemming from the principle of the respective method. Not every method suitable for all the applications. In the thesis the sequencing methods are compared and examined with respect to their appropriateness for certain application fields in microbiology. The currently available sequencing methods are usually categorized into three "generations", distinguished by sets of typical features. First generation methods include the systems of Sanger and Maxam-Gilbert; "next generation" is represented by methods 454, Illumina, SOLiD and Helicos; and finally SMRT, Ion Torrent and the commercially not yet available nanopore sequencing are usually called "next-next generation". Now the sequencing becomes a standard technology of molecular biology, not only in the basic microbiological research, but it is also widely applied in medicine (quick identification of patogenes,...
Sources, identification and removal of ChIP-seq artifacts
Shumilova, Aleksandra ; Převorovský, Martin (advisor) ; Fišer, Karel (referee)
Chromatin immunoprecipitation is used to enrich DNA sequences that are associ- ated with a protein of interest, and is used to map those sequences to the genomic regions. Studying these DNA-protein binding regions provides an understanding of gene regulation and chromatin remodeling. However, some signals in fact rep- resent no binding event and are known as false positives. This thesis discusses the main sources of false-positive signals that commonly arise during ChIP-seq analysis, and offers possible solutions on how to minimize or filter them. Keywords: ChIP-seq, chromatin imunoprecipitation, quality control, data filtra- tion iii
The use of parallel sequencing methods in microbiology.
Pavlíková, Magdaléna ; Najmanová, Lucie (advisor) ; Vopálenský, Václav (referee)
The thesis describes the history of development of sequencing methods with special focus on the modern effective parallel sequencing methods and their application in microbiology. The development and improvements of sequencing systems lead to the acceleration of the process and considerable decrease of price, which consequently allow wider spectrum of applications. Each of the sequencing systems has its characteristic features including drawbacks stemming from the principle of the respective method. Not every method suitable for all the applications. In the thesis the sequencing methods are compared and examined with respect to their appropriateness for certain application fields in microbiology. The currently available sequencing methods are usually categorized into three "generations", distinguished by sets of typical features. First generation methods include the systems of Sanger and Maxam-Gilbert; "next generation" is represented by methods 454, Illumina, SOLiD and Helicos; and finally SMRT, Ion Torrent and the commercially not yet available nanopore sequencing are usually called "next-next generation". Now the sequencing becomes a standard technology of molecular biology, not only in the basic microbiological research, but it is also widely applied in medicine (quick identification of patogenes,...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.