National Repository of Grey Literature 5 records found  Search took 0.02 seconds. 
Structure and function relationships of model hemoproteins
Lengálová, Alžběta ; Martínková, Markéta (advisor) ; Hudeček, Jiří (referee) ; Muchová, Lucie (referee)
Heme is one of the most important and most studied cofactors that are essential for proper function of many proteins. Heme-containing proteins comprise of a large group of biologically important molecules that are involved in many physiological processes. The presented dissertation is focused on two groups of heme sensor proteins, namely prokaryotic heme-based gas sensors and eukaryotic heme-responsive sensors. Heme-based gas sensors play an important role in regulation of many bacterial processes and consist usually of two domains, a sensor domain and a functional domain. The dissertation thesis aims at the study of two model bacterial heme-based gas sensors, histidine kinase AfGcHK and diguanylate cyclase YddV, in order to elucidate their mechanism of interdomain signal transduction. Using X-ray crystallography and hydrogen-deuterium exchange coupled to mass spectrometry approaches, significant differences in the structure of the AfGcHK protein between the active and inactive forms were described. The signal detection by the AfGcHK sensor domain affects the structural properties of the protein, and these conformational changes then have indirect impact on the enzyme activity of the functional domain. Further, the dissertation pays more attention to the effect of a sensor domain dimerization...
Comparison of apo- and holoforms of the transcription factor "Bach1"
Vávra, Jakub
Hemoproteins represent very important components of many living organisms. Participation in the processes of oxygen transport and storage, electron transport or enzymatic catalysis of reactions involving oxygen or hydrogen peroxide are commonly known functions of hemoproteins. Recently, there has been discovered a new group of hemoproteins. The main feature of this new group of proteins is their ability to detect changes in heme concentration (heme-responsive proteins) or changes in diatomic gas concentration (gas-responsive heme-containing sensor proteins) in their vicinity. Detection of these concentration changes generates signals that induce structural changes of the respective sensor proteins. Finally, the structural changes of the respective sensor proteins affect their functions or activities. The subject of this diploma thesis is the preparation and characterization of the eukaryotic heme sensor Bach1. We especially focused on the ability of Bach1 to bind heme molecules and on the comparison of various Bach1 properties in its apoform and holoform. Determination of the exact amount of heme molecules that specifically interact with heme sensor Bach1 represents very important part of this thesis. We also studied the effect of different redox states of heme iron and the presence of interaction...
Structure and function relationships of model hemoproteins
Lengálová, Alžběta ; Martínková, Markéta (advisor) ; Hudeček, Jiří (referee) ; Muchová, Lucie (referee)
Heme is one of the most important and most studied cofactors that are essential for proper function of many proteins. Heme-containing proteins comprise of a large group of biologically important molecules that are involved in many physiological processes. The presented dissertation is focused on two groups of heme sensor proteins, namely prokaryotic heme-based gas sensors and eukaryotic heme-responsive sensors. Heme-based gas sensors play an important role in regulation of many bacterial processes and consist usually of two domains, a sensor domain and a functional domain. The dissertation thesis aims at the study of two model bacterial heme-based gas sensors, histidine kinase AfGcHK and diguanylate cyclase YddV, in order to elucidate their mechanism of interdomain signal transduction. Using X-ray crystallography and hydrogen-deuterium exchange coupled to mass spectrometry approaches, significant differences in the structure of the AfGcHK protein between the active and inactive forms were described. The signal detection by the AfGcHK sensor domain affects the structural properties of the protein, and these conformational changes then have indirect impact on the enzyme activity of the functional domain. Further, the dissertation pays more attention to the effect of a sensor domain dimerization...
Comparison of apo- and holoforms of the transcription factor "Bach1"
Vávra, Jakub ; Martínková, Markéta (advisor) ; Brynychová, Veronika (referee)
Hemoproteins represent very important components of many living organisms. Participation in the processes of oxygen transport and storage, electron transport or enzymatic catalysis of reactions involving oxygen or hydrogen peroxide are commonly known functions of hemoproteins. Recently, there has been discovered a new group of hemoproteins. The main feature of this new group of proteins is their ability to detect changes in heme concentration (heme-responsive proteins) or changes in diatomic gas concentration (gas-responsive heme-containing sensor proteins) in their vicinity. Detection of these concentration changes generates signals that induce structural changes of the respective sensor proteins. Finally, the structural changes of the respective sensor proteins affect their functions or activities. The subject of this diploma thesis is the preparation and characterization of the eukaryotic heme sensor Bach1. We especially focused on the ability of Bach1 to bind heme molecules and on the comparison of various Bach1 properties in its apoform and holoform. Determination of the exact amount of heme molecules that specifically interact with heme sensor Bach1 represents very important part of this thesis. We also studied the effect of different redox states of heme iron and the presence of interaction...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.