National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
DNA Computing and Applications
Fiala, Jan ; Petrlík, Jiří (referee) ; Bidlo, Michal (advisor)
This thesis focuses on the design and implementation of an application involving the principles of DNA computing simulation for solving some selected problems. DNA computing represents an unconventional computing paradigm that is totally different from the concept of electronic computers. The main idea of DNA computing is to interpret the DNA as a medium for performing computation. Despite the fact, that DNA reactions are slower than operations performed on computers, they may provide some promising features in the future. The DNA operations are based on two important aspects: massive parallelism and principle of complementarity. There are many important problems for which there is no algorithm that would be able to solve the problem in a polynomial time using conventional computers. Therefore, the solutions of such problems are searched by exploring the entire state space. In this case the massive parallelism of the DNA operations becomes very important in order to reduce the complexity of finding a solution.
DNA Computing and Applications
Fiala, Jan ; Petrlík, Jiří (referee) ; Bidlo, Michal (advisor)
This thesis focuses on the design and implementation of an application involving the principles of DNA computing simulation for solving some selected problems. DNA computing represents an unconventional computing paradigm that is totally different from the concept of electronic computers. The main idea of DNA computing is to interpret the DNA as a medium for performing computation. Despite the fact, that DNA reactions are slower than operations performed on computers, they may provide some promising features in the future. The DNA operations are based on two important aspects: massive parallelism and principle of complementarity. There are many important problems for which there is no algorithm that would be able to solve the problem in a polynomial time using conventional computers. Therefore, the solutions of such problems are searched by exploring the entire state space. In this case the massive parallelism of the DNA operations becomes very important in order to reduce the complexity of finding a solution.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.