National Repository of Grey Literature 28 records found  beginprevious19 - 28  jump to record: Search took 0.01 seconds. 
In-flight modification of nanoparticles by chemically active plasma
Libenská, Hana ; Hanuš, Jan (advisor) ; Kohout, Jaroslav (referee)
Title: In-flight modification of nanoparticles by chemically active plasma Author: Hana Libenská Department: Department of Macromolecular Physics Supervisor: Mgr. Jan Hanuš Ph.D., Department of Macromolecular Physics Abstract: This diploma thesis is focused on a fabrication of the iron nanoparticles using the gas aggregation source with a planar magnetron and their in flight modification by chemically active plasma. The modification of the nanoparticles is based on a radiofrequency glow discharge, that takes place right after the nanoparticles flew out of the gas aggregation source. Nanoparticles are prepared in an argon atmosphere in which a small amount of the n-hexane has been admixed. This n-hexane impurity caused an increase in a deposition rate and higher time stability. The modification takes place in a glow discharge containing a pure argon, or in the mixtures of argon with n-hexane, ethylendiamine, hydrogen or nitrogen. Prepared nanoparticles were characterized using the X-ray photoelectron spectroscopy, scanning and transmission electron microscopy, X-ray diffraction and other techniques. The main aim of this work was to study the influence of the additional discharge on the iron nanoparticles. The chemical composition of the nanoparticles was measured immediatelly after their deposition without...
Nuclear magnetic resonance of Pb(x)Ba(1-x)(FeNb)0.5O3 perovskites
Adamec, Martin ; Chlan, Vojtěch (advisor) ; Kohout, Jaroslav (referee)
Temperature dependences of nuclear magnetic resonance spectra of isotopes 207 Pb, 137 Ba, and 93 Nb in polycrystalline samples of PbxBa1-x(FeNb)0.5O3, with x = 0 (BFN), 0.5 (PBFN), 1 (PFN) and in Pb(FeNb)0.5O3 single crystal (PFN SC) were acquired. Measured nuclear magnetic resonance spectra are analyzed in this work. The temperature dependence of the spectra show strong broadening with decreasing temperature. Part of the temperature dependences of nuclear magnetic resonance spectra did not comply with expected characteristics. Possible hypotheses for interpretation of such behavior are discussed in the text. Probable arrangement of Fe and Nb cations in PFN and BFN phases is deduced and, based on these differences, the contrast in Néel temperatures of these phases is explained.
Investigation of quantum turbulence using microresonators
Midlik, Šimon ; Schmoranzer, David (advisor) ; Kohout, Jaroslav (referee)
The principal aim of this Thesis is the construction of a cryogenic setup for the investigation of quantum turbulence in superfluid helium (He II) using microresonators and a to perform a study of the transition to turbulence in oscillatory flow of He II in the temperature range from 2.170 K down to 1.293 K. We have designed and constructed a setup consisting of a superconducting vibrating microwire and a so-called fountain pump, and, after initial testing and characterization, used it to probe the instabilities occurring in the flow of He II. Specifically, we were interested in the origin of the instabilities in the flow around the microwire and in the question whether they originate mostly from classical-like flow of the normal component, as is often the case with the well-known tuning forks, or whether they are related to the generation of quantized vortices in the superfluid component of He II. To distinguish between these two types of instabilities, we have derived from the Navier-Stokes equations scaling laws related to drag forces in classical oscillatory flow, which we have applied to the normal component of superfluid helium. This also enabled us to verify the validity of the high-frequency limit of oscillatory flow for the case of the microwire. Finally, we have examined the capability of the...
Relaxivity of magnetic iron oxide nanoparticles containing diamagnetic cations
Kubíčková, Lenka ; Kohout, Jaroslav (advisor) ; Chlan, Vojtěch (referee)
Magnetic nanoparticles have received extensive attention in the biomedical research, e.g. as prospective contrast agents for T2-weighted magnetic resonance imaging. The ability of a contrast agent to enhance the relaxation rate of 1 H in its vicinity is quantified by relaxivity. The main aim of this thesis is to evaluate the transversal re- laxivity of ε-Fe2−x Alx O3 nanoparticles coated with amorphous silica or citrate - its dependence on external magnetic field, temperature and thickness of silica coating - by means of nuclear magnetic resonance. The aluminium content x = 0.23(1) was determined from XRF, the material was further characterised by XRPD, Möss- bauer spectroscopy, DLS, TEM and magnetic measurements. The size of magnetic cores was ∼ 21 nm, the thickness of silica coating ∼ 6,10,17 and 21 nm. Magne- tization of the ε-Fe2−x Alx O3 nanoparticles increased by ∼ 30 % when compared to ε-Fe2O3. The saturating dependence of relaxivity on external magnetic field and on the linear decrease with increase of thickness of silica coating contravene the theo- retical model of motional averaging regime (MAR); nevertheless, the temperature dependence acquired in 0.47 T and 11.75 T may be explained by MAR. In compari- son to ε-Fe2O3 nanoparticles, the relaxivity of examined samples was higher for par-...
Relaxivity of magnetic nanoparticles
Kubíčková, Lenka ; Kohout, Jaroslav (advisor) ; Lančok, Adriana (referee)
Magnetic nanoparticles have found broad applications in medicine, in particular as contrast agents for T1- and T2-weighted magnetic resonance imaging (MRI). The ability of a contrast agent to influence the proton relaxation rate in a tissue is described by its relaxivity. In the submitted bachelor thesis we characterise physical properties of samples of ε-Fe2O3 nanoparticles coated with amorphous silica (SiO2), particularly with the aim to determine the dependences of their relaxivities on the magnetic field, temperature and thickness of silica coating. The distribution of the particle sizes was derived from the TEM pictures giving the median ~ 20 nm and the thickness of the silica coating ~4; 8; 13; 19 nm. The lattice parameters and presence of ˂ 2% admixtures of α phase were ascertained by XRD analysis; hyperfine parameters obtained by Mössbauer spectroscopy indicate no change of magnetic properties of the particles by silica coating. The relative amount of ε-Fe2O3 and SiO2 in the samples was specified from the magnetic measurements. Aqueous suspensions of different concentrations of coated nanoparticles were prepared, and their relaxivities r1, r2 were measured in different magnetic fields. Temperature dependence of relaxivities of a chosen sample was obtained in fields 0.47 T and 11.75 T....
Visualization of selected flows of water and cryogenic helium using tracer particles
Pilcová, Veronika ; Skrbek, Ladislav (advisor) ; Kohout, Jaroslav (referee)
Flow visualization techniques have recently been applied for the investigation of various cryogenic flows of liquid helium. Particle image velocimetry and particle tracking velocimetry techniques, proven in the past as very fruitful in many scientific and industrial areas of research, are being used for the analysis of cryogenic flows. The Joint Low Temperature Laboratory at the Charles University in Prague is the first in Europe to employ flow visualization techniques to investigate liquid helium flows. The approach had to be optimized due to a number of technical and fundamental dificulties, i.e., the optical access to the helium bath and choice of suitable tracer particles. Water experiments at room temperature were performed to prove that the experimental apparatus is well-suited for the low-temperature experiments performed as the main part of the work. The latter focused on thermal counter flow. The results from both, room-temperature experiments and low-temperature experiments are discussed and positively compared with well-known theoretical results.
Study of hyperfine interactions in nanoparticles present in biological systems
Kubániová, Denisa ; Kohout, Jaroslav (advisor) ; Závěta, Karel (referee)
In the submitted bachelor thesis we studied iron oxides by zero-field and in-field Mössbauer spectroscopy at room and liquid helium temperature. The relative composition in synthe- tically prepared nanoparticles of ferric oxide in SiO2 matrix is investigated in dependence on ferric oxide concentration and heating temperature and further the phase composi- tion and structure of biological nanoparticles produced by Geoalkalibacter ferrihydriticus bacteries in dependence on concentration of quinone in the cultivating solution. By data analysis the chemical and phase composition of the samples and hyperfine parametres of 57 Fe cations in nonequivalent crystallographic positions are determined. 1
OpenSSL-based client-server system
Kohout, Jaroslav ; Janovič, Filip (referee) ; Malý, Jan (advisor)
Aim of this diploma thesis is study of possibilities of OpenSSL extension in PHP environment and its implementation in securing client-server system example. This system will be use to store confidential data. Whole system will be exemplar of securing against scale of attacks leads to gain private data.

National Repository of Grey Literature : 28 records found   beginprevious19 - 28  jump to record:
See also: similar author names
4 KOHOUT, Jakub
12 KOHOUT, Jan
1 KOHOUT, Jaromír
11 KOHOUT, Jiří
4 Kohout, Jakub
12 Kohout, Jan
11 Kohout, Jiří
1 Kohout, Josef
Interested in being notified about new results for this query?
Subscribe to the RSS feed.