National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Optically trapped tunable droplet microlasers from liquid crystals
Pilát, Zdeněk ; Ježek, Jan ; Jonáš, A. ; Aas, M. ; Kiraz, A. ; Brzobohatý, Oto ; Zemánek, Pavel
We created a system for concurrent optical trapping, laser excitation and spectroscopy of liquid crystal droplets doped with a fluorescent dye. We observed whispering gallery modes and lasing of the droplet. We tuned the droplet laser frequency with optical forces, electric current or heating.
Compact device for fluorescence measurement by optical fiber in microfluidic chip
Ježek, Jan ; Pilát, Zdeněk ; Zemánek, Pavel
In our paper we present a device that combines fluorescence spectroscopy with fiber optics. The device allows high speed detection (in the order of kHz) of the fluorescence signal, which is coming from the sample by an inserted optical fiber, e.g. from a micro-droplet flow in a microfluidic chip, from the liquid flowing in the transparent capillary, etc. The device uses a laser diode at a wavelength suitable for excitation of fluorescence, excitation and emission filters, optics for focusing the laser radiation into the optical fiber, and a highly sensitive fast photodiode for detection of fluorescence.
Raman tweezers in microfluidic systems for automatic analysis and sorting of living cells
Pilát, Zdeněk
We have devised an automatic analytical and sorting system combining optical trapping with Raman spectroscopy in microfluidic environment, together with computerized real time image analysis, spectra processing and micromanipulation. This device serves to identify and sort biological objects, such as living cells of various prokaryotic and eukaryotic organisms based on their Raman spectral properties. This approach allowed us to collect information about the chemical composition of the objects, such as the presence and composition of lipids, proteins, or nucleic acids without using artificial chemical probes such as fluorescent markers. The non-destructive and non-contact nature of this optical analysis and manipulation allowed us to separate individual living cells of our interest in a sterile environment and provided the possibility to cultivate the selected cells for further experiments. The special microfluidic chip uses gravity to move the cells across the sorting area. Our system uses dedicated software to achieve fully automated spectral analysis and sorting. The devised system is a robust and universal platform for non-contact sorting of microobjects based on their chemical properties. It could find its use in many medical, biotechnological, and biological applications.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.