Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.02 vteřin. 
Balance of energy, water and nutrients in the aquaponic cycle
Szotkowski, Matěj ; Procházková, Michaela (oponent) ; Máša, Vítězslav (vedoucí práce)
The motivation behind this thesis was to provide an overview of current scientific knowledge in the area of aquaponic food production, which would culminate in the creation of a mathematical model. Additionally, an experimental aquaponic farm was to be examined from the viewpoint of water and energy balance to provide real-world data for the creation of the mathematical model. Lastly, the applicability of algal photobioreactor in a general aquaponic cycle was to be assessed. The preliminary part of the work describes the motives behind the need for innovation in agriculture. The definition of aquaponics is provided along with a description of its subcomponents, their working mechanism and design. In this part of the thesis, the nutrient cycle of aquaponics is outlined as well. As the last part of the theoretical portion of the work, the implementation of algal photobioreactor into the aquaponic cycle is examined. Mechanisms both motivating and discouraging from such an implementation are described. Consequently, the reactor in and of itself is examined more closely. The process variables influencing the growth of algae are presented along with possible reactor designs, harvesting methods, and utilizations of the resulting products. In the first part of the experimental section of this work, the examined farm run by Flenexa plus s.r.o. is introduced from the viewpoint of the aquaponic process. Furthermore, the water and energy balances of implemented aquaponic process are provided and evaluated. The focus is then shifted towards the mathematical models which were created based on the knowledge and data gathered in the course of this work. The logic and algorithms behind both models are explained and discussed along with their main features and capabilities. Paths of future development for both models are also outlined in the closing section. Lastly, the findings obtained and gathered during the process of the thesis creation are discussed and summarized in the concluding chapters.
Balance of energy, water and nutrients in the aquaponic cycle
Szotkowski, Matěj ; Procházková, Michaela (oponent) ; Máša, Vítězslav (vedoucí práce)
The motivation behind this thesis was to provide an overview of current scientific knowledge in the area of aquaponic food production, which would culminate in the creation of a mathematical model. Additionally, an experimental aquaponic farm was to be examined from the viewpoint of water and energy balance to provide real-world data for the creation of the mathematical model. Lastly, the applicability of algal photobioreactor in a general aquaponic cycle was to be assessed. The preliminary part of the work describes the motives behind the need for innovation in agriculture. The definition of aquaponics is provided along with a description of its subcomponents, their working mechanism and design. In this part of the thesis, the nutrient cycle of aquaponics is outlined as well. As the last part of the theoretical portion of the work, the implementation of algal photobioreactor into the aquaponic cycle is examined. Mechanisms both motivating and discouraging from such an implementation are described. Consequently, the reactor in and of itself is examined more closely. The process variables influencing the growth of algae are presented along with possible reactor designs, harvesting methods, and utilizations of the resulting products. In the first part of the experimental section of this work, the examined farm run by Flenexa plus s.r.o. is introduced from the viewpoint of the aquaponic process. Furthermore, the water and energy balances of implemented aquaponic process are provided and evaluated. The focus is then shifted towards the mathematical models which were created based on the knowledge and data gathered in the course of this work. The logic and algorithms behind both models are explained and discussed along with their main features and capabilities. Paths of future development for both models are also outlined in the closing section. Lastly, the findings obtained and gathered during the process of the thesis creation are discussed and summarized in the concluding chapters.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.