Národní úložiště šedé literatury Nalezeno 3 záznamů.  Hledání trvalo 0.01 vteřin. 
Anion-exchange enabled tuning of caesium lead mixed-halide perovskites for high-energy radiation detection
Matula, Radovan ; Friák, Martin (oponent) ; Dvořák, Petr (vedoucí práce)
Lead halide perovskites (LHPs) with their unprecedented functional qualities which are only enhanced by the simple band gap tuning, have taken the world of semiconductors by storm. The process of anion exchange, possible even post-synthesis, allows for band gap tuning of LHPs, resulting in lead mixed-halide perovskites (LMHPs), thus expanding their potential for applications, notably in tuneable detectors. The widespread adoption of LMHPs is, however, hindered by their chemical instability, which leads to halide segregation in the material, seriously inhibiting reliable operation of any LMHP-based device. Understanding the kinetics of the halide segregation over extended periods remains a challenge, motivating the use of theoretical simulations like Monte Carlo (MC) methods. Yet, MC simulations rely on well-defined potential energy surfaces (PES), typically derived from computationally intensive density functional theory (DFT) calculations. In this thesis, we propose a novel approach for constructing well-defined PES from high-fidelity DFT data with fraction of the computational load. Utilizing activation-relaxation technique noveau (ARTn) motivated searches for transition points in the PES combined with state-of-the-art machine learning approaches, we aim to to significantly reduce computational costs. Additionally, employing classical theory, we assess the detection capabilities of selected LMHPs.
Optical characterization of inorganic lead halide perovskites using ab-initio methods
Matula, Radovan ; Špaček, Ondřej (oponent) ; Liška, Petr (vedoucí práce)
This thesis deals with lead halide perovskites (LHPs), a relatively new group of materials which have found much use in fields such as photovoltaics and optoelectronics. LHPs’ potential lies in their electronic structure and easily tunable band gap, which result in unique physical and functional properties. To study LHPs’ optical properties and electronic structure we employ density functional theory (DFT). The DFT method is an ab-initio method built upon minimization of electron density functional to find the ground state energy of a given system. The DFT method was employed along with the use of hybrid functionals to obtain the correct band structure and band gap of CsPbBr3 bulk. The theoretically obtained data were used in the effective mass model to compare with the photoluminescence emission peaks of individual CsPbBr3 nanocrystals to correctly assess the exciton energy levels based on the nanocrystals’ size, and shape.
Optical characterization of inorganic lead halide perovskites using ab-initio methods
Matula, Radovan ; Špaček, Ondřej (oponent) ; Liška, Petr (vedoucí práce)
This thesis deals with lead halide perovskites (LHPs), a relatively new group of materials which have found much use in fields such as photovoltaics and optoelectronics. LHPs’ potential lies in their electronic structure and easily tunable band gap, which result in unique physical and functional properties. To study LHPs’ optical properties and electronic structure we employ density functional theory (DFT). The DFT method is an ab-initio method built upon minimization of electron density functional to find the ground state energy of a given system. The DFT method was employed along with the use of hybrid functionals to obtain the correct band structure and band gap of CsPbBr3 bulk. The theoretically obtained data were used in the effective mass model to compare with the photoluminescence emission peaks of individual CsPbBr3 nanocrystals to correctly assess the exciton energy levels based on the nanocrystals’ size, and shape.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.