|
Chování funkcí více proměnných z hlediska extrémů
Beseda, Jiří ; Votavová, Helena (oponent) ; Hoderová, Jana (vedoucí práce)
Problematika extrémů funkce více proměnných spočívá ve výpočtu maxima nebo minima této funkce. Toto maximum a minimum funkce může být lokální, vázané nebo globální. K zjištění extrémů využíváme zejména Sylvestrovo kritérium, pomocí kterého vyšetřujeme chování funkce v stacionárních bodech. Stacionární bod je bodem, ve kterém předpokládáme existenci maxima či minima funkce.
|
|
Extrémy funkce jedné a více proměnných
Floderová, Hana ; Hoderová, Jana (oponent) ; Štarha, Pavel (vedoucí práce)
Extrémy funkce jedné a více proměnných je problematika, ve které se snažíme vypočítat maximum nebo minimum funkce. Maximum a minimum funkce může být lokální, globální a u extrémů funkce více proměnných ještě vázané. K výpočtu nám pomáhají zejména derivace funkce, které položíme rovny nule a získáme stacionární bod. Stacionární bod je bodem, ve kterém předpokládáme existenci maxima či minima funkce.
|
|
Chování funkcí více proměnných z hlediska extrémů
Beseda, Jiří ; Štarha, Pavel (oponent) ; Hoderová, Jana (vedoucí práce)
Problematika extrému funkce více proměnných spočívá ve výpočtu maxima nebo minima této funkce. Toto maximum a minimum funkce může být lokální, vázané a globální. K výpočtu nám pomáhají zejména derivace funkce, které položíme rovny nule a získáme stacionární bod. Stacionární bod je bodem, ve kterém předpokládáme existenci maxima či minima funkce.
|
|
Chování funkcí více proměnných z hlediska extrémů
Beseda, Jiří ; Votavová, Helena (oponent) ; Hoderová, Jana (vedoucí práce)
Problematika extrémů funkce více proměnných spočívá ve výpočtu maxima nebo minima této funkce. Toto maximum a minimum funkce může být lokální, vázané nebo globální. K zjištění extrémů využíváme zejména Sylvestrovo kritérium, pomocí kterého vyšetřujeme chování funkce v stacionárních bodech. Stacionární bod je bodem, ve kterém předpokládáme existenci maxima či minima funkce.
|
|
Chování funkcí více proměnných z hlediska extrémů
Beseda, Jiří ; Štarha, Pavel (oponent) ; Hoderová, Jana (vedoucí práce)
Problematika extrému funkce více proměnných spočívá ve výpočtu maxima nebo minima této funkce. Toto maximum a minimum funkce může být lokální, vázané a globální. K výpočtu nám pomáhají zejména derivace funkce, které položíme rovny nule a získáme stacionární bod. Stacionární bod je bodem, ve kterém předpokládáme existenci maxima či minima funkce.
|
|
Extrémy funkce jedné a více proměnných
Floderová, Hana ; Hoderová, Jana (oponent) ; Štarha, Pavel (vedoucí práce)
Extrémy funkce jedné a více proměnných je problematika, ve které se snažíme vypočítat maximum nebo minimum funkce. Maximum a minimum funkce může být lokální, globální a u extrémů funkce více proměnných ještě vázané. K výpočtu nám pomáhají zejména derivace funkce, které položíme rovny nule a získáme stacionární bod. Stacionární bod je bodem, ve kterém předpokládáme existenci maxima či minima funkce.
|