Národní úložiště šedé literatury Nalezeno 37 záznamů.  1 - 10dalšíkonec  přejít na záznam: Hledání trvalo 0.00 vteřin. 
Akcelerace ultrazvukové neurostimulace pomocí multi-GPU systémů
Bayer, David ; Kadlubiak, Kristián (oponent) ; Jaroš, Jiří (vedoucí práce)
Tato diplomová práce se věnuje rozšíření akcelerované implementace simulace šíření akustických vln v médiu balíku k-Wave o možnost využití více GPU pro výpočet. Nejprve popisuje multi-GPU systémy a nástroje, pomocí kterých je s nimi možné pracovat. Pokračuje popisem balíku k-Wave a analýzou existujících akcelerovaných implementací. Dále testuje vybrané technologie na simulaci šíření tepla v médiu a na základě zjištěných výsledků vybírá nástroje pro návrh výsledné implementace. Nakonec shrnuje dosažené výsledky.
Optimalizace spouštěcích konfigurací k-Wave úloh
Sasák, Tomáš ; Jaroš, Marta (oponent) ; Jaroš, Jiří (vedoucí práce)
Táto práca sa zaoberá plánovaním, resp. správnym odhadom spúšťacích konfigurácií úloh k-Wave na superpočítačoch infraštruktúry IT4Innovations. Presnejšie pre klastre Salomon a Anselm. Úloha predstavuje množinu simulácií, kde každá simulácia je spúšťaná pod toolboxom k-Wave. Pre spustenie jednotlivých simulácií je nutné správne vytvoriť konfiguráciu, ktorá sa skladá z množstva zdrojov (počet výpočtových uzlov, resp. jadier) a času rezervácie superpočítača, čo je pre neskúseného zložité odhadnúť. Zvolený problém odhadu je riešený na základe empirických dát, ktoré boli získané viacnásobným spúšťaním rôznych množín simulácií na klastroch. Tieto dáta sú uložené a spracované aproximátormi, ktoré konkrétne vykonávajú odhad týchto parametrov na základe metód interpolácie a regresie. V práci je popísaný a bol implementovaný systém predstavujúci plánovač, ktorý predstavuje rozhranie pre odhad. Experimentovaním bolo zistené že pre tento špecifický problém najpresnejšie odhady vykonáva trojica Akima spline, PCHIP interpolácia a kubický spline. Výsledky tejto práce umožňujú vykonávať istý odhad exekučného času a počtu vlákien pre ľubovolné simulácie automaticky a bez znalosti kódu k-Wave.
Systém pro kontinuální integraci projektu k-Wave
Nečas, Radek ; Kešner, Filip (oponent) ; Jaroš, Jiří (vedoucí práce)
Tato práce se zabývá zavedením metodik a nástrojů postupné integrace do reálného projektu k-Wave. Věnuji se především verzi psané v jazyce C/C++ s využitím knihovny OpenMP, která je určená pro běh na superpočítačích. Projekt, díky svým vlastnostem a potřebám, nezapadá mezi běžné projekty, do kterých se postupná integrace zavádí. Z toho důvodu musela být řada běžných postupů upravena a bylo nutné vymyslet některé vlastní. Práce popisuje kompletní sestavení prakticky použitelného řešení. Pokrývá jeho návrh, výběr potřebných nástrojů, zprovoznění běhového prostředí, konfiguraci a nastavení služeb, ze kterých se řešení skládá a softwarovou implementaci frameworku pro běh testů na superpočítačích včetně realizace některých regresních a unit testů. Realizace je postavena na službách Gitlab a Jenkins, které běží v oddělených Docker kontejnerech.
Paralelizace ultrazvukových simulací na svazku grafických karet
Dujíček, Aleš ; Kula, Michal (oponent) ; Jaroš, Jiří (vedoucí práce)
Tato práce se zabývá rozšířením projektu k-Wave, který řeší simulace šíření ultrazvukových vln v heterogenním prostředí. Výpočet těchto simulací je založen na řešení soustavy parciálních diferenciálních rovnic pseudospektrální metodou. \\ Cílem této práce je využití lokální dekompozice pseudospektrální metody a výpočetního výkonu grafických karet ke zrychlení výpočtu těchto simulací. Dekompozicí výpočtu chceme dosáhnout nejen vyšší rychlosti, ale také možnosti provádět výpočet simulace ve větším prostoru, tedy s většími datovými mřížkami. Cílem je tedy dosáhnout nejen zrychlení, ale také dobré škálovatelnosti.
Optimalizace distribuovaného I/O subsystému projektu k-Wave
Vysocký, Ondřej ; Klepárník, Petr (oponent) ; Jaroš, Jiří (vedoucí práce)
Práce se zabývá řešením efektivního paralelního zápisu a čtení dat pro nástroj k-Wave, provádějící simulací šíření ultrazvuku. Tento nástroj je superpočítačovou aplikací, proto je spouštěn na souborovém systému Lustre a vyžaduje paralelní zpracování pomocí MPI a zápis ve formátu vhodném pro velké množství dat (HDF5). V rámci této práce byly navrženy metody efektivního způsobu zápisu dat dle potřeb k-Wave, pomocí kumulace dat a přerozdělování. Všechny metody zrychlily nativní zápis a vedly až k rychlosti zápisu 13,6GB/s. Popsané metody jsou použitelné pro všechny aplikace s distribuovanými daty a častým zápisem.
Implementace 2D ultrazvukových simulací
Šimek, Dominik ; Vaverka, Filip (oponent) ; Jaroš, Jiří (vedoucí práce)
Práca sa zaoberá návrhom a implementáciou 2D simulácie ultrazvukových vĺn. Simulácia ultrazvuku nachádza svoje uplatnenie v medicíne, biofyzike či rekonštrukcii obrazu. Ako príklad môžme uviesť použitie fokusovaného ultrazvuku na diagnostiku a liečbu rakoviny. Program je súčasťou simulačného balíka k-Wave určeného pre superpočítačové systémy, konkrétne stroje s architektúrou zdieľaného adresového priestoru. Program je implementovaný v jazyku C++ s využitím akcelerácie pomocou OpenMP. Pomocou implementovaného riešenia je možné riešiť simulácie veľkých rozmerov v 2D priestore. Práca sa ďalej zaoberá zjednotením kódu 2D a 3D simulácie pomocou moderných prostriedkov C++. Reálnym príkladom využitia je simulácia ultrazvuku pri transkraniálnej neuromodulácii a neurostimulácii, ktorá prebieha v doménach o veľkosti 16384x16384 (a viac) bodov mriežky. Simulácia takýchto rozmerov môže pri použití pôvodnej MATLAB 2D k-Wave trvať niekoľko dní. Implementované riešenie dosahuje voči MATLAB 2D k-Wave 7 až 8 násobné zrýchlenie na superpočítačoch Anselm a Salomon.
Simulace šíření ultrazvuku v kostech
Kadlubiak, Kristián ; Vaverka, Filip (oponent) ; Jaroš, Jiří (vedoucí práce)
Odhaduje sa, že v roku 2012 sa objavilo celosvetovo neuveriteľných 14.1 milióna nových prípadov rakoviny. Toto číslo je alarmujúce. Napriek tomu, že zdravý životný štýl môže zredukovať riziko vzniku rakoviny, vždy existuje istá pravdepodobnosť, že sa rakovina objaví aj u úplne zdravého jedinca. Na úspech liečenia rakoviny majú vplyv najmä dva faktory.  Po prvé -  včasná diagnostika je absolútne nevyhnutná,  po druhé - musí existovať vhodná operačná metóda na odstránenie poškodeného tkaniva. V obidvoch prípadoch má ultrazvuk veľký potenciál ako neinvazívna metóda. Fotoakustická spektroskopia je zobrazovacia metóda so skvelými vlastnosťami, založená na princípe ultrazvuku, schopná detegovať tumor.  High-Intensity Focused Ultrasound (HIFU) je neinvazívny chirurgický postup. Tieto metódy by však neboli možné bez presnej simulácie šírenia ultrazvuku. Balíček k-Wave je open source toolbox pre MATLAB, ktorý implementuje tieto simulácie. Vyvstáva otázka,  prečo nie sú tieto metódy bežne používané v praxi? Dôvodom je fakt, že simulácia šírenia ultrazvuku je veľmi časovo náročná operácia, čo robi tieto metódy neefektívnymi. Avšak existujú spôsoby akcelerácie takýchto simulácií. Implementácia simulácie na GPU je veľmi perspektívny prístup k akcelerácií.     Hlavnou úlohou tejto diplomovej práce je akcelerácia simulácie šírenia ultrazvuku v kostiach a iných tvrdých tkanivách. Implementácia vyvinutá v rámci diplomovej práce bola testovná na rôznych superpočítačoch ako napríklad Anselm v Ostrave alebo Piz Daint v Lugane. Implementované riešenie dosahuje pozoruhodné zrýchlenie v porovnaní s originálnym prototypom v prostredí MATLAB. V najlepšom prípade bola implementácia schopná urýchliť simuláciu približne 160 násobne. To znamená, že simulácia, ktorá by za iných okolností trvala 6,5 dňa, je dnes dokončená za jednu hodinu. Toto zrýchlenie bolo dosiahnuté počas simulácie s rozmermi 416x416x416  bodov a za použitia karty NVIDIA Tesla P100. Diplomová práca obsahuje porovnanie výkonu na rôznych grafických kartách, aby čitateľovi umožnila komplexnejší náhľad na akceleračné schopnosti vyvinutej implementácie a tiež poskytuje bližší pohľad na pamäťovú náročnosť a numerickú presnosť aplikácie. Vďaka schopnosti aplikácie naplno využiť potenciál grafických kariet, majú lekári a vyskumníci z celého sveta  v rukách mocný nástroj.
Acceleration of Axisymetric Ultrasound Simulations
Kukliš, Filip ; Vaverka, Filip (oponent) ; Jaroš, Jiří (vedoucí práce)
The simulation of ultrasound propagation through soft biological tissue has a wide range of practical applications. These include the design of transducers for diagnostic and therapeutic ultrasound, the development of new signal processing and imaging techniques, studying the aberration of ultrasound beams in heterogeneous media, ultrasonic tissue classification, training ultrasonographers to use ultrasound equipment and interpret ultrasound images, model-based medical image registration, and treatment planning and dosimetry for high-intensity focused ultrasound. However, ultrasound simulation presents a computationally difficult problem, as simulation domains are very large compared with the acoustic wavelengths of interest. But if the problem is axisymmetric, the governing equations can also be solved in 2D. This allows running simulations with larger grid size, with less computational resources and in a shorter time. This paper model and implements an acceleration of the Full-wave Nonlinear Ultrasound Simulation in an Axisymmetric Coordinate System implemented in Matlab using Mex Files for FFTW DST and DCT transformations. The axisymmetric simulation was implemented in C++ as an extension to the open source K-WAVE toolbox. The codes were optimized to run using one node of Salomon supercomputer cluster (IT4Innovations, Ostrava, Czechia) with two twelve-core Intel Xeon E5-2680v3 processors. To maximize computational efficiency, several stages of code optimization were performed. First, the FFTs were computed using the real-to-complex FFT from the FFTW library. Compared to the complex-to-complex FFT, this reduced the compute time and memory associated with the FFT by nearly 50%. Also, real-to-real DCTs and DSTs were computed using FFTW library, which ones in Matlab version, had to be invoked from dynamically loaded MEX Files. Second, to save memory bandwidth, all operations were computed in single precision. Third, element-wise operations were parallelized using OpenMP and then optimized using streaming SIMD extensions (SSE). The overall computation of the C++ k-space model is up to 34-times faster and uses less than one-third of the memory than Matlab version. The simulation which would take nearly two days by Matlab implementation can be now computed in one and half hour. This all allows running the simulation on the computational grid with 16384 × 8192 grid points within a reasonable time.
Neblokující vstup/výstup pro projekt k-Wave
Kondula, Václav ; Vaverka, Filip (oponent) ; Jaroš, Jiří (vedoucí práce)
Práce se zabývá implementací neblokujícího vstupně výstupního rozhraní pro projekt k-Wave, jež je navržen pro simulaci šíření ultrazvuku. Hlavní zaměření je na simulace velkých domén, jež kvůli vysokým nárokům na výpočetní výkon musí být spuštěny na superpočítačích a produkují až desítky GB dat během jediného simulačního kroku. V rámci této diplomové práce jsem navrhl a implementoval neblokující rozhraní pro ukládání dat využitím dedikovaných vláken, čímž se umožní překrytí výpočtu simulace s diskovými operacemi za účelem zkrácení doby provádění simulace. V projektu k-Wave se díky tomuto přístupu podařilo dosáhnout zrychlení až 33%, což má za následek mimo jiné také snížení finanční zátěže běhu simulace.
Akcelerace ultrazvukové neurostimulace pomocí vysokoúrovňových GPGPU knihoven
Mička, Richard ; Kadlubiak, Kristián (oponent) ; Jaroš, Jiří (vedoucí práce)
Táto práca sa zaoberá akceleráciou výpočtu simulácie šírenia akustických vĺn z balíku k-Wave pomocou GPGPU knižníc. Ako prvé, sú v práci preskúmané a ohodnotené dostupné vysokoúrovňové GPGPU knižnice. Následne je, po oboznámení sa so súčasným stavom riešenia akcelerácie simulácie v k-Wave, navrhnutý spôsob, ktorým je možné transformovať kód určený pre procesor, do podoby spustiteľnej aj na grafickej karte. Výsledkom tejto práce je aplikácia schopná akcelerovať výpočet simulácie na grafickej karte. V prípade neprítomnosti grafickej karty, je schopná bežať na procesore, s využitím vláknového a SIMD paralelizmu. Táto implementácia je následne ohodnotená z hľadiska výkonnosti, náročnosti a užitočnosti.

Národní úložiště šedé literatury : Nalezeno 37 záznamů.   1 - 10dalšíkonec  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.