Národní úložiště šedé literatury Nalezeno 6 záznamů.  Hledání trvalo 0.01 vteřin. 
Current Induced Magnetization Dynamics in Nanostructures
Uhlíř, Vojtěch ; Thiaville, André (oponent) ; Ravelosona, Dafiné (oponent) ; Šikola, Tomáš (vedoucí práce)
This thesis deals with the study of current-induced magnetization dynamics and domain wall (DW) motion in NiFe/Cu/Co nanowires, induced by the so-called spin-transfer torque effect. Prior to this work, transport measurements had proven that in this trilayer system, DWs in NiFe can be moved with relatively low current densities, suggesting a particularly high spin-torque efficiency. The aim of this study has been to use photoemission electron microscopy combined with x-ray magnetic circular dichroism at synchrotron radiation sources to observe directly the magnetic configurations in the trilayers and their evolution during and after the application of nanosecond current pulses. An important step of the work has been to optimize the growth of the NiFe/Cu/Co layers, in the view of increasing interface quality and minimize interlayer coupling. The process of nanowire patterning by e-beam lithography has also been optimized. Two kinds of measurements have been carried out: i) quasi static measurements, where the domain configuration is observed before and after the application of current pulses and ii) dynamic measurements, where the magnetic configuration has been observed during the application of current pulses. The first measurements have allowed us to study the statistical behaviour of DWs under the application of current pulses: on one hand, the domain wall velocities reach extremely high values for relatively low current densities (up to 600 m/s for 5x10^11 A/m^2). On the other hand, DW motion over distances larger than 2-3 microns is strongly hindered by pinning. Time-resolved measurements during the current pulses, carried out for the first time by our team, have allowed us to demonstrate that the NiFe magnetization is strongly tilted in the direction transverse to the nanowire direction, due to the presence of a transverse Oersted field. This effect might contribute to the enhancement of DW velocities in the NiFe layers.
Magnetic vortex based memory device
Dhankhar, Meena ; Hrabec,, Aleš (oponent) ; Veis,, Martin (oponent) ; Urbánek, Michal (vedoucí práce)
Magnetic vortices are characterized by the sense of in-plane magnetization circulation and the polarity of the vortex core, each having two possible states. As a result, there are four possible, stable magnetization configurations that can be utilized for a multibit memory device. This thesis presents the selective writing of vortex states by electric current pulses and electric readout of the vortex states in a magnetic disk. Prior to the electric measurements, static readout of vortex states is carried out by MFM, and then by MTXM, after applying different current pulses to switch the vortex states. Later, we added all-electric static and finally dynamic readout of the vortex state. Vortex circulation control is based on a geometrical asymmetry formed by cropping one side of the magnetic disk. The flat edge of the disk provides a preferential direction defining the sense of circulation during the nucleation process. Polarity control is generally achieved in a two-step process. Firstly, a homogeneously magnetized perpendicular magnetic anisotropy layer placed at the bottom of the disk imposes a defined vortex polarity upon nucleation of a vortex. Secondly, a fast-current pulse is used to toggle switch the vortex polarity, if needed. Hence, we are able to set the desired vortex state by sending a low amplitude nanosecond pulse that sets the circulation followed by a high amplitude picosecond pulse, which sets the polarity. The vortex states are then detected by electric spectroscopy via the anisotropic magnetoresistance effect. The samples for all the static and dynamic measurements are prepared by e-beam lithography and the lift-off technique.
Investigation of magnetization dynamics in GaMnAs by ultrafast laser spectroscopy
Tesařová, Naďa ; Němec, Petr (vedoucí práce) ; Ferguson, Andrew (oponent) ; Antoš, Roman (oponent)
Tato doktorská práce se zabývá studiem dynamik magnetizace ve feromagnetickém polovodiči (Ga,Mn)As pomocí metod magneto-optické (MO) spektroskopie. Charakter dynamik magnetizace po dopadu laserového pulzu byl zkoumán za různých experimentálních podmínek na široké sadě optimalizovaných vzorků (Ga,Mn)As obsahujících koncentraci Mn atomů v rozmezí od 1,5% do 14%. Díky důkladné analýze měřených MO signálů se nám podařilo vyvinout novou metodu, která umožňuje určit laserovým pulsem vyvolanou trajektorii magnetizace v reálném prostoru bez nutnosti jakéhokoliv numerického modelování. Studium naměřených MO signálů nám také umožnilo určit základní mikromagnetické vlastnosti (Ga,Mn)As, jakými jsou například magnetická anizotropie, Gilbertův faktor tlumení, nebo tzv. spin stiffness. Dále jsme zjistili, že světlem vyvolaná precese magnetizace může mít tři různé příčiny - zahřátí vzorku vlivem přenosu energie z laserových pulzů, přenos úhlového momentu hybnosti z kruhově polarizovaných fotonů a působení nerovnovážné spinové polarizace děr vyvolané relativistickou spin-orbitální interakcí. Zatímco první z těchto mechanizmů je dobře znám, ty dva zbývající mechanismy, které odpovídají optické analogii "spin trasfer torque" a "spin-orbit torque", zatím nebyly v literatuře popsány.
Magnetic vortex based memory device
Dhankhar, Meena ; Hrabec,, Aleš (oponent) ; Veis,, Martin (oponent) ; Urbánek, Michal (vedoucí práce)
Magnetic vortices are characterized by the sense of in-plane magnetization circulation and the polarity of the vortex core, each having two possible states. As a result, there are four possible, stable magnetization configurations that can be utilized for a multibit memory device. This thesis presents the selective writing of vortex states by electric current pulses and electric readout of the vortex states in a magnetic disk. Prior to the electric measurements, static readout of vortex states is carried out by MFM, and then by MTXM, after applying different current pulses to switch the vortex states. Later, we added all-electric static and finally dynamic readout of the vortex state. Vortex circulation control is based on a geometrical asymmetry formed by cropping one side of the magnetic disk. The flat edge of the disk provides a preferential direction defining the sense of circulation during the nucleation process. Polarity control is generally achieved in a two-step process. Firstly, a homogeneously magnetized perpendicular magnetic anisotropy layer placed at the bottom of the disk imposes a defined vortex polarity upon nucleation of a vortex. Secondly, a fast-current pulse is used to toggle switch the vortex polarity, if needed. Hence, we are able to set the desired vortex state by sending a low amplitude nanosecond pulse that sets the circulation followed by a high amplitude picosecond pulse, which sets the polarity. The vortex states are then detected by electric spectroscopy via the anisotropic magnetoresistance effect. The samples for all the static and dynamic measurements are prepared by e-beam lithography and the lift-off technique.
Investigation of magnetization dynamics in GaMnAs by ultrafast laser spectroscopy
Tesařová, Naďa ; Němec, Petr (vedoucí práce) ; Ferguson, Andrew (oponent) ; Antoš, Roman (oponent)
Tato doktorská práce se zabývá studiem dynamik magnetizace ve feromagnetickém polovodiči (Ga,Mn)As pomocí metod magneto-optické (MO) spektroskopie. Charakter dynamik magnetizace po dopadu laserového pulzu byl zkoumán za různých experimentálních podmínek na široké sadě optimalizovaných vzorků (Ga,Mn)As obsahujících koncentraci Mn atomů v rozmezí od 1,5% do 14%. Díky důkladné analýze měřených MO signálů se nám podařilo vyvinout novou metodu, která umožňuje určit laserovým pulsem vyvolanou trajektorii magnetizace v reálném prostoru bez nutnosti jakéhokoliv numerického modelování. Studium naměřených MO signálů nám také umožnilo určit základní mikromagnetické vlastnosti (Ga,Mn)As, jakými jsou například magnetická anizotropie, Gilbertův faktor tlumení, nebo tzv. spin stiffness. Dále jsme zjistili, že světlem vyvolaná precese magnetizace může mít tři různé příčiny - zahřátí vzorku vlivem přenosu energie z laserových pulzů, přenos úhlového momentu hybnosti z kruhově polarizovaných fotonů a působení nerovnovážné spinové polarizace děr vyvolané relativistickou spin-orbitální interakcí. Zatímco první z těchto mechanizmů je dobře znám, ty dva zbývající mechanismy, které odpovídají optické analogii "spin trasfer torque" a "spin-orbit torque", zatím nebyly v literatuře popsány.
Current Induced Magnetization Dynamics in Nanostructures
Uhlíř, Vojtěch ; Thiaville, André (oponent) ; Ravelosona, Dafiné (oponent) ; Šikola, Tomáš (vedoucí práce)
This thesis deals with the study of current-induced magnetization dynamics and domain wall (DW) motion in NiFe/Cu/Co nanowires, induced by the so-called spin-transfer torque effect. Prior to this work, transport measurements had proven that in this trilayer system, DWs in NiFe can be moved with relatively low current densities, suggesting a particularly high spin-torque efficiency. The aim of this study has been to use photoemission electron microscopy combined with x-ray magnetic circular dichroism at synchrotron radiation sources to observe directly the magnetic configurations in the trilayers and their evolution during and after the application of nanosecond current pulses. An important step of the work has been to optimize the growth of the NiFe/Cu/Co layers, in the view of increasing interface quality and minimize interlayer coupling. The process of nanowire patterning by e-beam lithography has also been optimized. Two kinds of measurements have been carried out: i) quasi static measurements, where the domain configuration is observed before and after the application of current pulses and ii) dynamic measurements, where the magnetic configuration has been observed during the application of current pulses. The first measurements have allowed us to study the statistical behaviour of DWs under the application of current pulses: on one hand, the domain wall velocities reach extremely high values for relatively low current densities (up to 600 m/s for 5x10^11 A/m^2). On the other hand, DW motion over distances larger than 2-3 microns is strongly hindered by pinning. Time-resolved measurements during the current pulses, carried out for the first time by our team, have allowed us to demonstrate that the NiFe magnetization is strongly tilted in the direction transverse to the nanowire direction, due to the presence of a transverse Oersted field. This effect might contribute to the enhancement of DW velocities in the NiFe layers.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.