Národní úložiště šedé literatury Nalezeno 4 záznamů.  Hledání trvalo 0.01 vteřin. 
Mikro-prutové struktury s proměnným průměrem prutu
Brulík, Karel ; Jaroš, Jan (oponent) ; Červinek, Ondřej (vedoucí práce)
Díky svým specifickým vlastnostem mají mikro-prutové struktury velký potenciál pro využití v aplikacích uvažujících absorpci energie. Ukazuje se, že běžné mikro-prutové struktury s konstantním objemovým podílem je možné navrhovat pro předem známé množství absorbované energie. V reálných aplikacích však často předem známé není. Proto se jako perspektivnější jeví využití struktur s proměnným objemovým podílem, které lze navrhovat pro širší škálu působících energií. Cílem této práce bylo porovnání mikro prutových struktur s proměnným průměrem prutu, vyrobených z nerezové oceli 316L technologií selective laser melting, z hlediska schopnosti absorpce energie. Za tímto účelem byly vyrobeny dva typy struktur – F2BCC a F2BCC_45, oba v konfiguracích s konstantním, plynule proměnným a skokově proměnným průměrem prutu. Struktury byly následně dynamicky zatěžovány pomocí pádového testu, jehož výsledky byly popsány průběhem deformace a sil v čase. Větší množství absorbované energie bylo naměřené u struktur typu F2BCC_45, a to až o 73 % v závislosti na konfiguraci struktury. Výsledky odhalily, že proměnný průměr prutu nemá velký vliv na množství absorbované energie, ale výrazně snižuje vzniklé rázy, dle typu a konfigurace struktury až o 54 %. Tato práce přináší komplexní pohled na deformační a napěťové charakteristiky obou typů struktur, a především porovnání vlivu proměnného průměru prutu.
Výpočtový model dynamického zatěžování mikro-prutové struktury vyrobené technologií Selective Laser Melting
Červinek, Ondřej ; Maňas, Pavel (oponent) ; Vrána, Radek (vedoucí práce)
V současnosti se pro tlumení velkých rázů mechanické energie v dopravním průmyslu využívají především absorbéry ze speciálních profilů. Pro vysoce specializované aplikace je vhodné využít komponenty, které jsou přesně navrženy pro cílený druh deformace. Příkladem těchto dílů jsou průmyslově vyráběné kovové pěny nebo mikro-prutové struktury vyráběné technologií SLM. Tato práce se zabývá predikcí nízko-rychlostního dynamického zatěžování BCC mikro-prutové struktury vyrobené z hliníkové slitiny AlSi10Mg technologií SLM (SLM 280HL). Pro tento účel byla vytvořena dynamická MKP úloha mikro-prutové struktury, která byla doplněna o model materiálu struktury BCC, který byl získán na základě mechanického testování. Reálná geometrie testovaných vzorků, získaná na základě optického měření (Atos Triple Scan III), byla dále implementována do výpočtového modelu. Experiment dynamického zatěžování BCC struktury byl proveden na pádovém testeru. Chování strukturovaného materiálu při pádovém testu bylo popsáno průběhem deformace a sil reakce v čase. Pro plošné zatěžování dynamické MKP simulace a experimentu bylo dosaženo porovnatelných výsledků. Zahrnutí výrobních fenoménů v simulaci vedlo ke zvýšení přesnosti a shody s experimentem. Tím byl vytvořen nástroj pro testování vlivu změny geometrie na mechanické vlastnosti. Pro dosažení přesnějších výsledků u zatížení průrazem je třeba modifikovat model materiálu o reálné přetvoření materiálu v místě porušení testovacích těles.
Mikro-prutové struktury s proměnným průměrem prutu
Brulík, Karel ; Jaroš, Jan (oponent) ; Červinek, Ondřej (vedoucí práce)
Díky svým specifickým vlastnostem mají mikro-prutové struktury velký potenciál pro využití v aplikacích uvažujících absorpci energie. Ukazuje se, že běžné mikro-prutové struktury s konstantním objemovým podílem je možné navrhovat pro předem známé množství absorbované energie. V reálných aplikacích však často předem známé není. Proto se jako perspektivnější jeví využití struktur s proměnným objemovým podílem, které lze navrhovat pro širší škálu působících energií. Cílem této práce bylo porovnání mikro prutových struktur s proměnným průměrem prutu, vyrobených z nerezové oceli 316L technologií selective laser melting, z hlediska schopnosti absorpce energie. Za tímto účelem byly vyrobeny dva typy struktur – F2BCC a F2BCC_45, oba v konfiguracích s konstantním, plynule proměnným a skokově proměnným průměrem prutu. Struktury byly následně dynamicky zatěžovány pomocí pádového testu, jehož výsledky byly popsány průběhem deformace a sil v čase. Větší množství absorbované energie bylo naměřené u struktur typu F2BCC_45, a to až o 73 % v závislosti na konfiguraci struktury. Výsledky odhalily, že proměnný průměr prutu nemá velký vliv na množství absorbované energie, ale výrazně snižuje vzniklé rázy, dle typu a konfigurace struktury až o 54 %. Tato práce přináší komplexní pohled na deformační a napěťové charakteristiky obou typů struktur, a především porovnání vlivu proměnného průměru prutu.
Výpočtový model dynamického zatěžování mikro-prutové struktury vyrobené technologií Selective Laser Melting
Červinek, Ondřej ; Maňas, Pavel (oponent) ; Vrána, Radek (vedoucí práce)
V současnosti se pro tlumení velkých rázů mechanické energie v dopravním průmyslu využívají především absorbéry ze speciálních profilů. Pro vysoce specializované aplikace je vhodné využít komponenty, které jsou přesně navrženy pro cílený druh deformace. Příkladem těchto dílů jsou průmyslově vyráběné kovové pěny nebo mikro-prutové struktury vyráběné technologií SLM. Tato práce se zabývá predikcí nízko-rychlostního dynamického zatěžování BCC mikro-prutové struktury vyrobené z hliníkové slitiny AlSi10Mg technologií SLM (SLM 280HL). Pro tento účel byla vytvořena dynamická MKP úloha mikro-prutové struktury, která byla doplněna o model materiálu struktury BCC, který byl získán na základě mechanického testování. Reálná geometrie testovaných vzorků, získaná na základě optického měření (Atos Triple Scan III), byla dále implementována do výpočtového modelu. Experiment dynamického zatěžování BCC struktury byl proveden na pádovém testeru. Chování strukturovaného materiálu při pádovém testu bylo popsáno průběhem deformace a sil reakce v čase. Pro plošné zatěžování dynamické MKP simulace a experimentu bylo dosaženo porovnatelných výsledků. Zahrnutí výrobních fenoménů v simulaci vedlo ke zvýšení přesnosti a shody s experimentem. Tím byl vytvořen nástroj pro testování vlivu změny geometrie na mechanické vlastnosti. Pro dosažení přesnějších výsledků u zatížení průrazem je třeba modifikovat model materiálu o reálné přetvoření materiálu v místě porušení testovacích těles.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.