Národní úložiště šedé literatury Nalezeno 4 záznamů.  Hledání trvalo 0.00 vteřin. 
Problematics of aerodynamic damping calculation from measured data of 5-blade cascade
Šnábl, Pavel ; Pešek, Luděk ; Prasad, Chandra Shekhar ; Chindada, Sony
Aerodynamic damping as a function of inter-blade phase angle (IBPA), so called S-curve, is crucial for assessment of aeroelastic stability of blade cascades, e.g. turbines, compressors, etc.\nFor constructing the S-curve, the motion-induced controlled flutter is introduced to the bladesof the cascade. As decribed in [1], two testing methods exist: aerodynamic influence coefficient\n(AIC) approach and travelling wave mode (TWM) approach. In TWM approach, all blades in a row oscillate with the same frequency and amplitude with various IBPAs. The response is\nmeasured only on the reference blade. With this approach, several measurements with different IPBAs are needed to construct the S-curve. On the other hand, AIC uses single oscillating\nblade and principle of linear superimposition of aerodynamic influence responses measured on all blades in a cascade. The result of one single measurement can be used for estimation of\naerodynamic damping for any IBPA. In the past year a new 5-blade cascade with rotating symmetrical NACA 0010 profiles was designed and built. The blades of the cascade were placed further apart and thus we are now able to reach stall flutter. Also, the suspension of the blades and sensors were significantly improved. Now, our goal is to evaluate S-curves using AIC approach for different flow conditions and oscillation frequencies.
Simple model for investigation of aerodynamic coupling in linear blade cascades
Chládek, Štěpán ; Pešek, Luděk ; Procházka, Pavel P.
Simple viscous-elastic model has been proposed for investigation of aerodynamic coupling in linear blade cascades. One blade is connected with both adjacent blades using idealized springs and dampers which represent viscous fluid. All blades may oscillate with one degree of freedom represented by vertical translation. Energy method using travelling waves model was utilized for aerodynamic damping coefficient derivation. The proposed model does not compute the damping values quantitatively, nevertheless it provides the damping shape analysis. Interesting results are presented within zero and low subsonic flow velocities, where the experiment included velocity flow field measurement.
Classical flutter analysis of low pressure steam turbine blade cascade using 3D boundary element method
Prasad, Chandra Shekhar ; Pešek, Luděk
In this paper study of aeroelastic stability in steam turbine rotor is carried out using boundary element method. A mesh free fluid\nsolver is developed for fast estimation of unsteady aerodynamic loading and to estimate the aerodynamic damping in 3D blade cascade. The aerodynamic damping is estimated in traveling wave mode. The unsteady incompressible flow field is modeled using 3D surface Panel method. The proposed methodology successfully estimates aerodynamic damping with acceptable accuracy the for the aeroelastic (classical \n flutter) analysis of 3D blade cascade. The simulated results are compared with experimental data. The simulated aerodynamic damping shows good agreement with\nexperimental results. The present methodology shows significant reduction in computational time over computational fluid dynamic solvers.
Fast estimation of flutter parameters of steam turbine blades using boundary element methods
Prasad, Chandra Shekhar ; Pešek, Luděk
In the present paper the classical flutter parameters in turbomachinery cascade such as aerodynamic damping estimation using fast numerical method is described. The unsteady aerodynamic loading and the aerodynamic damping (AD) coefficient of the vibrating cascades is estimated by 2D boundary elementmethod such as source and doublet panel method (PM). To estimate the flutter parameters aerodynamic influence coefficient traveling wave mode (TWM)method is adopted. The experimental aerodynamic damping is compared against simulated results. The result demonstrate that potential flow based boundary elements method can estimate the AD with desired accuracy and less computational time.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.