Národní úložiště šedé literatury Nalezeno 3 záznamů.  Hledání trvalo 0.01 vteřin. 
Numerical and Experimental Investigation of the Flow Field in Five Blade Linear Cascade in Subsonic Flow
Šnábl, Pavel ; Chindada, Sony ; Bublík, O. ; Procházka, Pavel P. ; Prasad, Chandra Shekhar
In large steam turbines, last stage blades are very long and must be designed very thin and with no shroud to minimize the centrifugal force which leads to low eigenfrequencies and low structural damping. In this case, aero-elastic damping plays important role on last stage bladed disc’s dynamics. Three major aero-elastic issues found in turbomachinery are forced response, non-synchronous vibrations, and flutter. Flutter is an unstable, self-excited vibration resulting from coupling between the structural vibrations and unsteady aerodynamic forces. It is clear that this unstable behaviour must be avoided and predictions of flutter behaviour need to be performed during design stage of the turbine.\n
Problematics of aerodynamic damping calculation from measured data of 5-blade cascade
Šnábl, Pavel ; Pešek, Luděk ; Prasad, Chandra Shekhar ; Chindada, Sony
Aerodynamic damping as a function of inter-blade phase angle (IBPA), so called S-curve, is crucial for assessment of aeroelastic stability of blade cascades, e.g. turbines, compressors, etc.\nFor constructing the S-curve, the motion-induced controlled flutter is introduced to the bladesof the cascade. As decribed in [1], two testing methods exist: aerodynamic influence coefficient\n(AIC) approach and travelling wave mode (TWM) approach. In TWM approach, all blades in a row oscillate with the same frequency and amplitude with various IBPAs. The response is\nmeasured only on the reference blade. With this approach, several measurements with different IPBAs are needed to construct the S-curve. On the other hand, AIC uses single oscillating\nblade and principle of linear superimposition of aerodynamic influence responses measured on all blades in a cascade. The result of one single measurement can be used for estimation of\naerodynamic damping for any IBPA. In the past year a new 5-blade cascade with rotating symmetrical NACA 0010 profiles was designed and built. The blades of the cascade were placed further apart and thus we are now able to reach stall flutter. Also, the suspension of the blades and sensors were significantly improved. Now, our goal is to evaluate S-curves using AIC approach for different flow conditions and oscillation frequencies.
Experimental and numerical evaluation of blade cascade instability using travelling wave mode approach
Chindada, Sony ; Šnábl, Pavel ; Pešek, Luděk
The stability of experimental blade cascade with five NACA 0010 profiles was measured and evaluated with travelling wave mode approach with three inner blades oscilating. The measured moment of the middle blade consist of not only the aerodynamic moment from the flow but also structural moment from the blade dynamics. Two days of obtaining the aerodynamic moment from the measured data are herein presented and the results compared. In addition, numercial simulations were done and the results from 2D CFD analysis in ANSYS are compared with the experimental data.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.