Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Approximations in Stochastic Optimization and Their Applications
Mrázková, Eva ; Horová, Ivana (oponent) ; Štěpánek, Petr (oponent) ; Karpíšek, Zdeněk (vedoucí práce)
Many optimum design problems in engineering areas lead to optimization models constrained by ordinary (ODE) or partial (PDE) differential equations, and furthermore, several elements of the problems may be uncertain in practice. Three engineering problems concerning the optimization of vibrations and an optimal design of beam dimensions are considered. The uncertainty in the form of random load or random Young's modulus is involved. It is shown that two-stage stochastic programming offers a promising approach in solving such problems. Corresponding mathematical models involving ODE or PDE type constraints, uncertain parameters and multiple criteria are formulated and lead to (multi-objective) stochastic nonlinear optimization models. It is also proved for which type of problems stochastic programming approach (EO reformulation) should be used and when it is sufficient to solve simpler deterministic problem (EV reformulation). This fact has the big importance in practice in term of computational intensity of large scale problems. Computational schemes for this type of problems are proposed, including discretization methods for random elements and ODE or PDE constraints. By means of derived approximations the mathematical models are implemented and solved in GAMS. The solution quality is determined by an interval estimate of the optimality gap computed via Monte Carlo bounding technique. Parametric analysis of multi-criteria model results in efficient frontier computation. The alternatives of approximations of the model with reliability-related probabilistic terms including mixed-integer nonlinear programming and penalty reformulations are discussed. Furthermore, the progressive hedging algorithm is implemented and tested for the selected problems with respect to future possibilities of parallel computing of large engineering problems. The results show that it can be used even when the mathematical conditions for convergence are not fulfilled. Finite difference method and finite element method are compared for deterministic version of ODE constrained problem by using GAMS and ANSYS with quite comparable results.
Approximations in Stochastic Optimization and Their Applications
Mrázková, Eva ; Horová, Ivana (oponent) ; Štěpánek, Petr (oponent) ; Karpíšek, Zdeněk (vedoucí práce)
Many optimum design problems in engineering areas lead to optimization models constrained by ordinary (ODE) or partial (PDE) differential equations, and furthermore, several elements of the problems may be uncertain in practice. Three engineering problems concerning the optimization of vibrations and an optimal design of beam dimensions are considered. The uncertainty in the form of random load or random Young's modulus is involved. It is shown that two-stage stochastic programming offers a promising approach in solving such problems. Corresponding mathematical models involving ODE or PDE type constraints, uncertain parameters and multiple criteria are formulated and lead to (multi-objective) stochastic nonlinear optimization models. It is also proved for which type of problems stochastic programming approach (EO reformulation) should be used and when it is sufficient to solve simpler deterministic problem (EV reformulation). This fact has the big importance in practice in term of computational intensity of large scale problems. Computational schemes for this type of problems are proposed, including discretization methods for random elements and ODE or PDE constraints. By means of derived approximations the mathematical models are implemented and solved in GAMS. The solution quality is determined by an interval estimate of the optimality gap computed via Monte Carlo bounding technique. Parametric analysis of multi-criteria model results in efficient frontier computation. The alternatives of approximations of the model with reliability-related probabilistic terms including mixed-integer nonlinear programming and penalty reformulations are discussed. Furthermore, the progressive hedging algorithm is implemented and tested for the selected problems with respect to future possibilities of parallel computing of large engineering problems. The results show that it can be used even when the mathematical conditions for convergence are not fulfilled. Finite difference method and finite element method are compared for deterministic version of ODE constrained problem by using GAMS and ANSYS with quite comparable results.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.