Národní úložiště šedé literatury Nalezeno 4 záznamů.  Hledání trvalo 0.01 vteřin. 
Adaptace systémů pro rozpoznání mluvčího
Novotný, Ondřej ; Pešán, Jan (oponent) ; Plchot, Oldřich (vedoucí práce)
V této práci navrhneme techniky adaptace systémů na rozpoznávání řeči. Cílem je vytvořit techniku adaptace Pravděpodobnostní lineární diskriminační analýzy. Zaměříme se na adap-taci bez učitele. Naše testy ukáží vhodné shlukovací techniky pro odhad identity mluvčích a vhodné techniky na odhad počtu mluvčích v adaptační datové sadě. Experimenty jsou prováděny na korpusech NIST a Switchboard.
Efektivní implementace výpočetně náročných algoritmů na Intel Xeon Phi
Šimek, Dominik ; Hrbáček, Radek (oponent) ; Jaroš, Jiří (vedoucí práce)
Táto práca sa zaoberá implementáciou a optimalizáciou výpočtovo náročných algoritmov na koprocesore Intel Xeon Phi. Koprocesor Xeon Phi bol predstavený firmou Intel v roku 2012 ako odpoveď na obrovský nárast v používaní technológie GPGPU. Xeon Phi disponuje podstatne väčším výkonom ako procesor, preto je podobne ako GPGPU vhodnou platformou pre beh výpočtovo náročných programov. Xeon Phi zatiaľ v praxi nie je velmi používaný, preto je potrebné hľadať možné oblasti uplatnenia. Rozrastá sa ale jeho použitie v superpočítačových centrách, napríklad Milky Way 2 - Guangzhou (Čina), Salomon - Ostrava. Cieľom tohto dokumentu je oboznámiť čitateľa s problematikou implementácie náročných algoritmov na akceleračnej karte Xeon Phi, ich optimalizácie a meranie výkonu. Výkon koprocesoru Intel Xeon Phi bude porovnávaný s výkonom procesorov Intel Xeon.  V teoretickej časti práce bude čitateľ oboznámený s architektúrou a princípmi koprocesoru Xeon Phi. Budeme sa venovať výhodám ale aj nevýhodám tohto koprocesoru, ktoré budú často porovnávané s všeobecnými vlastnosťami procesorov. Témou bude taktiež otázka, kedy je vhodné zvoliť pre výpočet akcelerečnú kartu Xeon Phi a kedy procesor. Detailne si vysvetlíme a znázorníme výber vhodných algoritmov pre Xeon Phi, postup ich implementácie, optimalizácie a meranie výkonu. Okrem toho budú rozoberané problémy a úskalia, ktoré môžu nastať pri implementácii algoritmov a používaní koprocesoru. Dané demonštrujeme najskôr na ukážkových problémoch, ktoré boli riešené na Ostravskom superpočítači Anselm. V prvom rade to budú jednoduché benchamrky typu násobenie matíc, násobenie matice a vektora, na ktorých budú ukázané základné princípy implementácie optimálnych algoritmov pre koprocesor Xeon Phi. Napríklad pri benchmarku násobenia matice a vektora bolo dosiahnutých asi 6.5% teoretického výkonu koprocesoru. Ďalším, komplexnejším problémom bude N-Body Simulation - simulácia pohybu častíc v priestore, na ktorom sme otestovali potenciál Xeon Phi. Výkon koprocesoru sa pri tomto benchmarku vyšplhal až na viac ako 35% teoretického výkonu - 725 gFLOPS (maximálny výkon 2000 gFLOPS pre dáta s jednoduchou presnosťou). Čitateľ sa okrem iného môže dozvedieť aj zaujímavé informácie z oblasti fyzikálnych simulácií, konkrétne bude reč o module pre MATLAB (k-Wave). K-Wave sa zaoberá simuláciou šírenia akustických vĺn v 1D, 2D a 3D, čo sa využíva napríklad pri simulácii šírenia ultrazvukových vĺn v mäkkých tkanivách. Na koniec si stručne povieme o portovaní už existujúcich knižníc, modulov či programov na Xeon Phi zo snahou využitia jeho potenciálu. Bude to napríklad kroskompilácia knižníc HDF5, ZLIB či konca interpretu jazyka Python s modulmi Numpy a Scipy.
Adaptace systémů pro rozpoznání mluvčího
Novotný, Ondřej ; Pešán, Jan (oponent) ; Plchot, Oldřich (vedoucí práce)
V této práci navrhneme techniky adaptace systémů na rozpoznávání řeči. Cílem je vytvořit techniku adaptace Pravděpodobnostní lineární diskriminační analýzy. Zaměříme se na adap-taci bez učitele. Naše testy ukáží vhodné shlukovací techniky pro odhad identity mluvčích a vhodné techniky na odhad počtu mluvčích v adaptační datové sadě. Experimenty jsou prováděny na korpusech NIST a Switchboard.
Efektivní implementace výpočetně náročných algoritmů na Intel Xeon Phi
Šimek, Dominik ; Hrbáček, Radek (oponent) ; Jaroš, Jiří (vedoucí práce)
Táto práca sa zaoberá implementáciou a optimalizáciou výpočtovo náročných algoritmov na koprocesore Intel Xeon Phi. Koprocesor Xeon Phi bol predstavený firmou Intel v roku 2012 ako odpoveď na obrovský nárast v používaní technológie GPGPU. Xeon Phi disponuje podstatne väčším výkonom ako procesor, preto je podobne ako GPGPU vhodnou platformou pre beh výpočtovo náročných programov. Xeon Phi zatiaľ v praxi nie je velmi používaný, preto je potrebné hľadať možné oblasti uplatnenia. Rozrastá sa ale jeho použitie v superpočítačových centrách, napríklad Milky Way 2 - Guangzhou (Čina), Salomon - Ostrava. Cieľom tohto dokumentu je oboznámiť čitateľa s problematikou implementácie náročných algoritmov na akceleračnej karte Xeon Phi, ich optimalizácie a meranie výkonu. Výkon koprocesoru Intel Xeon Phi bude porovnávaný s výkonom procesorov Intel Xeon.  V teoretickej časti práce bude čitateľ oboznámený s architektúrou a princípmi koprocesoru Xeon Phi. Budeme sa venovať výhodám ale aj nevýhodám tohto koprocesoru, ktoré budú často porovnávané s všeobecnými vlastnosťami procesorov. Témou bude taktiež otázka, kedy je vhodné zvoliť pre výpočet akcelerečnú kartu Xeon Phi a kedy procesor. Detailne si vysvetlíme a znázorníme výber vhodných algoritmov pre Xeon Phi, postup ich implementácie, optimalizácie a meranie výkonu. Okrem toho budú rozoberané problémy a úskalia, ktoré môžu nastať pri implementácii algoritmov a používaní koprocesoru. Dané demonštrujeme najskôr na ukážkových problémoch, ktoré boli riešené na Ostravskom superpočítači Anselm. V prvom rade to budú jednoduché benchamrky typu násobenie matíc, násobenie matice a vektora, na ktorých budú ukázané základné princípy implementácie optimálnych algoritmov pre koprocesor Xeon Phi. Napríklad pri benchmarku násobenia matice a vektora bolo dosiahnutých asi 6.5% teoretického výkonu koprocesoru. Ďalším, komplexnejším problémom bude N-Body Simulation - simulácia pohybu častíc v priestore, na ktorom sme otestovali potenciál Xeon Phi. Výkon koprocesoru sa pri tomto benchmarku vyšplhal až na viac ako 35% teoretického výkonu - 725 gFLOPS (maximálny výkon 2000 gFLOPS pre dáta s jednoduchou presnosťou). Čitateľ sa okrem iného môže dozvedieť aj zaujímavé informácie z oblasti fyzikálnych simulácií, konkrétne bude reč o module pre MATLAB (k-Wave). K-Wave sa zaoberá simuláciou šírenia akustických vĺn v 1D, 2D a 3D, čo sa využíva napríklad pri simulácii šírenia ultrazvukových vĺn v mäkkých tkanivách. Na koniec si stručne povieme o portovaní už existujúcich knižníc, modulov či programov na Xeon Phi zo snahou využitia jeho potenciálu. Bude to napríklad kroskompilácia knižníc HDF5, ZLIB či konca interpretu jazyka Python s modulmi Numpy a Scipy.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.