Národní úložiště šedé literatury Nalezeno 6 záznamů.  Hledání trvalo 0.00 vteřin. 
Interakce mitochondrií s dalšími buněčnými strukturami.
Vinopalová, Martina ; Doležal, Pavel (vedoucí práce) ; Voleman, Luboš (oponent)
Mitochondrie v buňkách plní různorodé role, od produkce energeticky bohatých molekul, nutných pro správný chod buňky, homeostázi vápníku, apoptózy až po biosyntézu Fe-S center, hemu a steroidů. Ke koordinaci některých těchto dějů s procesy odehrávajícími se ve zbytku buňky ji mimo jiné slouží i komunikace s dalšími buněčnými strukturami prostřednictvím jejich vzájemných fyzických kontaktů. Vzniklé platformy také dávají vzniku dodatečným mitochondriálním funkcím. Tato bakalářská práce shrnuje dosavadní poznatky z buněk savčích modelových organismů a kvasinek Saccharomyces cerevisiae o interakcích této semiautonomní organely s ostatními buněčnými komponenty a o funkcích, které tyto interakce zprostředkovávají.
Biogenesis of Giardia intestinalis mitosomes
Voleman, Luboš ; Doležal, Pavel (vedoucí práce) ; Faso, Carmen (oponent) ; Dawson, Scott C. (oponent)
8 ABSTRAKT Mitochondrie opisthokont neustále fúzují a dělí se v průběhu celého buněčného cyklu. Udržení těchto dvou procesů v rovnováze je pro buňku zásadní. Mitochondriální fúze i dělení jsou řízeny dynaminovými GTPázami, které jsou konzervovány napříč všemi organismy. Jak mitochondriální fúze a dělení probíhá mimo zmíněnou skupinu organismů téměř není známo. V naší práci jsme se zabývali zavedením fluorescenčního značení pro live imaging do organismů G. intestinalis a T. vaginalis, jednobuněčných parazitů ze skupiny Excavata. Pomocí této metody jsme poté zkoumali dynamiku mitosomů, nejjednodušších forem mitochondrií, u G. intestinalis. Zjistili jsme, že dělení mitosomů probíhá během mitozy, se kterou je absolutně synchronizováno, a že ke stejné synchronizaci dochází také během encystace parazita. Dále jsme objevili, že během buněčného cyklu jsou mitosomy spojené s endoplasmatickým retikulem, nicméně charakter tohoto spojení není znám, jelikož genom Giardie nekóduje žádný ze známých proteinů zodpovědných za zprostředkování tohoto kontaktu. Prozatím jediným proteinem nalezeným v místech kontaktu mitosomů a endoplasmatického retikula je acyl-CoA syntetáza 4, enzym biosyntézy lipidů. Také jsme se zabývali hledáním dalších potenciálních mitosomálních ...
Biogenesis of Giardia intestinalis mitosomes
Voleman, Luboš ; Doležal, Pavel (vedoucí práce) ; Faso, Carmen (oponent) ; Dawson, Scott C. (oponent)
8 ABSTRAKT Mitochondrie opisthokont neustále fúzují a dělí se v průběhu celého buněčného cyklu. Udržení těchto dvou procesů v rovnováze je pro buňku zásadní. Mitochondriální fúze i dělení jsou řízeny dynaminovými GTPázami, které jsou konzervovány napříč všemi organismy. Jak mitochondriální fúze a dělení probíhá mimo zmíněnou skupinu organismů téměř není známo. V naší práci jsme se zabývali zavedením fluorescenčního značení pro live imaging do organismů G. intestinalis a T. vaginalis, jednobuněčných parazitů ze skupiny Excavata. Pomocí této metody jsme poté zkoumali dynamiku mitosomů, nejjednodušších forem mitochondrií, u G. intestinalis. Zjistili jsme, že dělení mitosomů probíhá během mitozy, se kterou je absolutně synchronizováno, a že ke stejné synchronizaci dochází také během encystace parazita. Dále jsme objevili, že během buněčného cyklu jsou mitosomy spojené s endoplasmatickým retikulem, nicméně charakter tohoto spojení není znám, jelikož genom Giardie nekóduje žádný ze známých proteinů zodpovědných za zprostředkování tohoto kontaktu. Prozatím jediným proteinem nalezeným v místech kontaktu mitosomů a endoplasmatického retikula je acyl-CoA syntetáza 4, enzym biosyntézy lipidů. Také jsme se zabývali hledáním dalších potenciálních mitosomálních ...
Export biomolekul z mitochondrií.
Pelc, Josef ; Doležal, Pavel (vedoucí práce) ; Kovalčíková, Jana (oponent)
Mitochondrie je buněčná organela, která vznikla z endosymbiotické bakterie. Díky svému původu si zachovala některé unikátní vlastnosti a metabolické dráhy. Mitochondrie nebo její redukované formy jsou přítomny s jedinou známou výjimkou ve všech eukaryotických organismech. Převážná část mitochondriální DNA byla přesunuta do jádra. Přesto však je mitochondrie schopná kódovat několik proteinů, které jsou součástí elektron-transportního řetězce a ATP syntázy. Tyto proteiny jsou z matrix mitochondrie transportovány do vnitřní mitochondriální membrány. Špatně složené proteiny vnitřní mitochondriální membrány jsou degradovány mitochondriálními proteázami a dochází k uvolňování peptidů. Matrix mitochondrie je místem vzniku Fe-S klastrů. Dosud neznámá molekula, která je produktem této dráhy, se dostává do cytosolu a účastní se skládání cytosolických a jaderných Fe-S proteinů. Další transportní dráha zajišťuje výměnu lipidů mezi endoplazmatickým retikulem a mitochondrií. Obě mitochondriální membrány mají různé lipidové složení. Pro udržení jejich vlastností je vyžadován transport lipidů mezi oběma mitochondriálními membránami. Tato dráha je využívána i pro syntézu specifických lipidů na vnitřní mitochondriální membráně.
Interakce mitochondrií s dalšími buněčnými strukturami.
Vinopalová, Martina ; Doležal, Pavel (vedoucí práce) ; Voleman, Luboš (oponent)
Mitochondrie v buňkách plní různorodé role, od produkce energeticky bohatých molekul, nutných pro správný chod buňky, homeostázi vápníku, apoptózy až po biosyntézu Fe-S center, hemu a steroidů. Ke koordinaci některých těchto dějů s procesy odehrávajícími se ve zbytku buňky ji mimo jiné slouží i komunikace s dalšími buněčnými strukturami prostřednictvím jejich vzájemných fyzických kontaktů. Vzniklé platformy také dávají vzniku dodatečným mitochondriálním funkcím. Tato bakalářská práce shrnuje dosavadní poznatky z buněk savčích modelových organismů a kvasinek Saccharomyces cerevisiae o interakcích této semiautonomní organely s ostatními buněčnými komponenty a o funkcích, které tyto interakce zprostředkovávají.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.