Národní úložiště šedé literatury Nalezeno 7 záznamů.  Hledání trvalo 0.01 vteřin. 
Emergent properties of the G1/S network
Dražková, Jana ; Tomášek, Petr (oponent) ; Palumbo,, Pasquale (vedoucí práce)
In this thesis we deal with the cell cycle of the yeast Saccharomyces cerevisiae. We are interested in its G1 to S transition, and our main goal is to determine the cell size at the onset of its DNA replication. At first, we study a recent mathematical model describing the mechanisms leading to the S phase, we provide its detailed description and present the dynamics of some significant protein and protein complexes. Further, we take a closer look at the probabilistic model for firing of DNA replication origins. We newly consider the influence of DNA replication spreading among neighboring origins, and we analyze its consequences. We also provide a sensitivity analysis of the critical cell size with respect to rate constants of G1 to S transition model.
Biogeneze a funkce jaderných železo-sirných proteinů
Panova, Ekaterina ; Benda, Martin (vedoucí práce) ; Smutná, Tamara (oponent)
Železo-sirné klastry jsou důležitými anorganickými kofaktory mnoha buněčných reakcí, včetně těch, které probíhají v jádře. Jaderné železo-sirné proteiny hrají důležitou roli při replikaci DNA, opravách genomu a udržovaní jeho stability. Biosyntéza těchto železo-sirných klastrů začíná v mitochondriích pomocí ISC dráhy (iron-sulfur cluster assembly) pokračuje v cytosolu v CIA dráze (cytosolic iron-sulfur cluster assembly) a končí zabudováním klastrů do cílových apoproteinů, kterými jsou například polymerázy, primázy, helikázy, endonukleázy nebo glykosylázy. Tato bakalářská práce shrnuje současné poznatky o dráhách biosyntézy železo-sirných klastrů, o funkcích jaderných železo-sirných proteinů a o úloze železo-sirných klastrů v těchto proteinech, včetně fenotypů a klinických projevů způsobených jejich absencí. Klíčová slova: železo-sirné klastry, metaloproteiny, jádro, replikace DNA, oprava DNA
Porovnání efektivity výuky za pomoci počítače vs. 3D modelů
Andělová, Denisa ; Janštová, Vanda (vedoucí práce) ; Jáč, Martin (oponent)
V současné době zájem žáků o přírodní vědy neustále klesá, ačkoli je tato oblast vzdělání v praktickém životě velmi důležitá (medicína, životní prostředí, atd.) a na trhu práce velmi žádaná. Molekulární biologie, učivo o DNA a přenosu genetické informace je pro žáky abstraktní a těžko představitelné téma, které je i pro učitele náročné na vysvětlení. Existuje mnoho možností, jak tuto učební látku vyučovat. Velmi populární jsou badatelsky orientovaná výuka nebo praktická výuka v laboratořích. Každá škola však nemá k dispozici vlastní laboratoř, aby žáci mohli laborovat, badatelsky orientovaná výuka je časově náročnější na přípravu a ne každé téma je vhodné takto učit. Další možností je využít k vizualizaci "neviditelných" molekul a procesů počítačový software a animace nebo 3D fyzického modelu či si vlastní model dané molekuly vyrobit. Ve své diplomové práci jsem zkoumala vliv použití počítačů a animací ve výuce v porovnání s použitím 3D fyzického modelu DNA a výroby vlastního modelu DNA na znalosti žáků. Dalšími faktory, které mně zajímaly, byly pohlaví a zaměření žáků a jejich případný vliv na znalosti. Výzkum jsme prováděla v pěti třídách na třech pražských gymnáziích a zúčastnili se ho žáci třetího ročníku šestiletého studia, přírodovědný seminář sedmého ročníku osmi- letého studia a žáci...
Strukturně-funkční organizace buněčného jádra.Mikroskopická analýza jaderných subkompartmentů.
Jůda, Pavel ; Cmarko, Dušan (vedoucí práce) ; Mokrý, Jaroslav (oponent) ; Kučera, Tomáš (oponent) ; Smetana, Karel (oponent)
Pavel Jůda - Abstrakt Buněčné jádro představuje komplexní buněčnou organelu. Jádro a jaderné procesy jsou organizovány do jednotlivých funkčně a morfologicky oddělených jaderných subkompartmentů. Tato dizertační práce se postupně zabývá několika jadernými subkompartmenty neboli doménami: místy aktivní replikace, Polycomb tělísky a jadernými inkluzemi tvořenými inozin monofosfát dehydrogenázou 2 (IMPDH2). V první části práce jsme se soustředili na zkoumání vztahu MCM komplexu s předpokládanou DNA helikázovou aktivitou k replikaci DNA. Imunofluorescenčním značením buněk extrahovaných před fixací a analýzou dat pomocí kros-korelační funkce jsme prokázali přítomnost MCM proteinů v místech aktivní replikace. Naše výsledky přispěly k vyřešení jedné části tzv. MCM paradoxu. Dále jsme studovali strukturní podstatu Polycomb tělísek. Polycomb tělíska byla na základě fluorescenční mikroskopie považována za jaderný subkompartment tvořený nahromaděním Polycomb proteinů v interchromatinovém prostoru. V naší práci jsme pomocí korelační světelné a elektronové mikroskopie a experimentů využívajících změn makromolekulární přeplněnosti vnitřního prostředí buňky, takzvaného makromolekulárního crowdingu, prokázali, že Polycomb tělíska nepředstavují jaderná tělíska, ale že odpovídají spíše chromatinové doméně. Naše výsledky...
Strukturně-funkční organizace buněčného jádra.Mikroskopická analýza jaderných subkompartmentů.
Jůda, Pavel ; Cmarko, Dušan (vedoucí práce) ; Mokrý, Jaroslav (oponent) ; Kučera, Tomáš (oponent) ; Smetana, Karel (oponent)
Pavel Jůda - Abstrakt Buněčné jádro představuje komplexní buněčnou organelu. Jádro a jaderné procesy jsou organizovány do jednotlivých funkčně a morfologicky oddělených jaderných subkompartmentů. Tato dizertační práce se postupně zabývá několika jadernými subkompartmenty neboli doménami: místy aktivní replikace, Polycomb tělísky a jadernými inkluzemi tvořenými inozin monofosfát dehydrogenázou 2 (IMPDH2). V první části práce jsme se soustředili na zkoumání vztahu MCM komplexu s předpokládanou DNA helikázovou aktivitou k replikaci DNA. Imunofluorescenčním značením buněk extrahovaných před fixací a analýzou dat pomocí kros-korelační funkce jsme prokázali přítomnost MCM proteinů v místech aktivní replikace. Naše výsledky přispěly k vyřešení jedné části tzv. MCM paradoxu. Dále jsme studovali strukturní podstatu Polycomb tělísek. Polycomb tělíska byla na základě fluorescenční mikroskopie považována za jaderný subkompartment tvořený nahromaděním Polycomb proteinů v interchromatinovém prostoru. V naší práci jsme pomocí korelační světelné a elektronové mikroskopie a experimentů využívajících změn makromolekulární přeplněnosti vnitřního prostředí buňky, takzvaného makromolekulárního crowdingu, prokázali, že Polycomb tělíska nepředstavují jaderná tělíska, ale že odpovídají spíše chromatinové doméně. Naše výsledky...
Porovnání efektivity výuky za pomoci počítače vs. 3D modelů
Andělová, Denisa ; Janštová, Vanda (vedoucí práce) ; Jáč, Martin (oponent)
V současné době zájem žáků o přírodní vědy neustále klesá, ačkoli je tato oblast vzdělání v praktickém životě velmi důležitá (medicína, životní prostředí, atd.) a na trhu práce velmi žádaná. Molekulární biologie, učivo o DNA a přenosu genetické informace je pro žáky abstraktní a těžko představitelné téma, které je i pro učitele náročné na vysvětlení. Existuje mnoho možností, jak tuto učební látku vyučovat. Velmi populární jsou badatelsky orientovaná výuka nebo praktická výuka v laboratořích. Každá škola však nemá k dispozici vlastní laboratoř, aby žáci mohli laborovat, badatelsky orientovaná výuka je časově náročnější na přípravu a ne každé téma je vhodné takto učit. Další možností je využít k vizualizaci "neviditelných" molekul a procesů počítačový software a animace nebo 3D fyzického modelu či si vlastní model dané molekuly vyrobit. Ve své diplomové práci jsem zkoumala vliv použití počítačů a animací ve výuce v porovnání s použitím 3D fyzického modelu DNA a výroby vlastního modelu DNA na znalosti žáků. Dalšími faktory, které mně zajímaly, byly pohlaví a zaměření žáků a jejich případný vliv na znalosti. Výzkum jsme prováděla v pěti třídách na třech pražských gymnáziích a zúčastnili se ho žáci třetího ročníku šestiletého studia, přírodovědný seminář sedmého ročníku osmi- letého studia a žáci...
Emergent properties of the G1/S network
Dražková, Jana ; Tomášek, Petr (oponent) ; Palumbo,, Pasquale (vedoucí práce)
In this thesis we deal with the cell cycle of the yeast Saccharomyces cerevisiae. We are interested in its G1 to S transition, and our main goal is to determine the cell size at the onset of its DNA replication. At first, we study a recent mathematical model describing the mechanisms leading to the S phase, we provide its detailed description and present the dynamics of some significant protein and protein complexes. Further, we take a closer look at the probabilistic model for firing of DNA replication origins. We newly consider the influence of DNA replication spreading among neighboring origins, and we analyze its consequences. We also provide a sensitivity analysis of the critical cell size with respect to rate constants of G1 to S transition model.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.