Národní úložiště šedé literatury Nalezeno 5 záznamů.  Hledání trvalo 0.01 vteřin. 
Příprava trénovacích dat pomocí generativních neuronových sítí
Ševčík, Pavel ; Kolář, Martin (oponent) ; Hradiš, Michal (vedoucí práce)
Cílem této práce byla příprava trénovací datové sady pro detekci dopravních značek pomocí generativních neuronových sítí. V řešení byla použita upravená architektura U-Net a bylo experimentováno s aplikací stylů pomocí vrstev AdaIN podobně jako v modelu StyleGAN. Rozšířením reálné datové sady GTSDB o uměle vytvořené snímky bylo dosaženo úspěšnosti 80,36 %, což představuje zlepšení o 19,27 % oproti úspěšnosti detektoru natrénovanému pouze na reálných datech.
Generativní neuronové sítě pro ručně psané písmo
Ševčík, Pavel ; Dobeš, Petr (oponent) ; Hradiš, Michal (vedoucí práce)
Cílem této práce bylo vytvořit model pro generování řádků ručně psaného písma. Model na základě očekávaného stylu a libovolně dlouhého textu vytváří odpovídají obrázek s písmem. Navržené řešení překonává existující přístupy v kvalitě generovaného písma a umožňuje generování jak samostatných slov, tak i řádků. Kombinuje vyhledávání příznaků pro jednotlivé symboly pomocí attention a jejich rozmístění na řádek pomocí vkládání mezer. Nový přístup umožňuje specifikovat pozice symbolů na řádku jemněji než celými čísly, a tak vytvářet plynulejší interpolace mezi různými styly. Na rozdíl od předchozího řešení tento přístup využívá Gaussův filtr pro rozšíření jednotlivých příznaků symbolů do blízkého okolí. Současně tento přístup otevírá množnost trénování modelu pro odhad pozic symbolů na řádku adversariální chybou (GAN). Navíc byly vytvořeny anotace horizontálních pozic symbolů na řádcích datové sady ručně psaného písma IAM.
Augmentace datasetu s využitím metod přenesení stylu
Wolny, Michał ; Ligocki, Adam (oponent) ; Kratochvíla, Lukáš (vedoucí práce)
Tato bakalářská práce se zaměřuje na metody augmentace datasetu a metody přenesení stylu. Z celého spektra dostupných algoritmů pro přenos stylu byly vybrány tři velmi odlišné metody, které byly implementovány a následně experimentálně použity k augmentaci datasetu. Efektivita augmentace pomocí těchto metod byla ověřena prostřednictvím provedení statistické analýzy každého nově vytvořeného datasetu ve srovnání s původním, neupraveným datasetem. Výsledky analýzy poskytují důležité informace o změnách ve statistických charakteristikách, jako je entropie, průměr, medián, rozptyl a směrodatná odchylka. Tyto informace pomohly zhodnotit účinnost a vliv použitých metod augmentace na rozšířený dataset a poskytnout důkazy o jejich potenciálu.
Generativní neuronové sítě pro ručně psané písmo
Ševčík, Pavel ; Dobeš, Petr (oponent) ; Hradiš, Michal (vedoucí práce)
Cílem této práce bylo vytvořit model pro generování řádků ručně psaného písma. Model na základě očekávaného stylu a libovolně dlouhého textu vytváří odpovídají obrázek s písmem. Navržené řešení překonává existující přístupy v kvalitě generovaného písma a umožňuje generování jak samostatných slov, tak i řádků. Kombinuje vyhledávání příznaků pro jednotlivé symboly pomocí attention a jejich rozmístění na řádek pomocí vkládání mezer. Nový přístup umožňuje specifikovat pozice symbolů na řádku jemněji než celými čísly, a tak vytvářet plynulejší interpolace mezi různými styly. Na rozdíl od předchozího řešení tento přístup využívá Gaussův filtr pro rozšíření jednotlivých příznaků symbolů do blízkého okolí. Současně tento přístup otevírá množnost trénování modelu pro odhad pozic symbolů na řádku adversariální chybou (GAN). Navíc byly vytvořeny anotace horizontálních pozic symbolů na řádcích datové sady ručně psaného písma IAM.
Příprava trénovacích dat pomocí generativních neuronových sítí
Ševčík, Pavel ; Kolář, Martin (oponent) ; Hradiš, Michal (vedoucí práce)
Cílem této práce byla příprava trénovací datové sady pro detekci dopravních značek pomocí generativních neuronových sítí. V řešení byla použita upravená architektura U-Net a bylo experimentováno s aplikací stylů pomocí vrstev AdaIN podobně jako v modelu StyleGAN. Rozšířením reálné datové sady GTSDB o uměle vytvořené snímky bylo dosaženo úspěšnosti 80,36 %, což představuje zlepšení o 19,27 % oproti úspěšnosti detektoru natrénovanému pouze na reálných datech.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.