Národní úložiště šedé literatury Nalezeno 4 záznamů.  Hledání trvalo 0.01 vteřin. 
Světlem ovládané biomolekuly
Planer, Jakub ; Bartošík, Miroslav (oponent) ; Vácha,, Robert (oponent) ; Kulhánek, Petr (vedoucí práce)
Tato práce je zaměřena na molekulárně dynamické simulace umělého fotocitlivého iontového kanálu a AFM hrotu. Při sestavování modelu iontového kanálu byly použity DFT metody pro reparametrizaci silového pole GAFF popisující přemostěný azobenzen, který sloužil jako světlem ovládaný molekulární přepínač, a pomocí simulací jsme prokázali, že námi vyvinuté parametry vhodně popisují chování sestaveného modelu iontového kanálu v lipidové dvouvrstvě. Dále jsme sestavili model AFM hrotu a pomocí molekulární dynamiky pozorovali vznik vodního menisku mezi hrotem a podložkou z -křemene. Přínosem této práce je soubor nových parametrů opravující silové pole GAFF pro správný popis přemostěného azobenzenu, ověření funkčnosti modelu navrhnutého iontového kanálu a vytvoření funkčního modelu AFM hrotu, na kterém je možno dále studovat vznik vodního menisku.
Vizuální detekce elektronických součástek
Juhas, Miroslav ; Honec, Peter (oponent) ; Janáková, Ilona (vedoucí práce)
Tato práce popisuje použití zpracování obrazu pro přesné měření vzdáleností v automatické výrobě hrotu pro AFM mikroskop. Hlavním cílem je měření vzdáleností mezi jednotlivými díly během výroby. Účelem je získání dat pro automatickou výrobní linku, která má nahradit nepřesnou a neopakovatelnou manuální výrobu. Výrobní proces sestává ze tří technologických kroků. V prvních dvou krocích je přilepen wolframový drát k nosníku. V těchto krocích je, pro správné zarovnaní částí, nutno měřit vzdálenost ve všech třech osách. Ve třetím kroku je odleptán ostrý hrot v roztoku KOH. Musí být dodržena správná vzdálenost mezi hladinou roztoku a nosníkem. K získání obrazu je použita kamera s vysokým rozlišením a makro objektivem. Obraz je poté kalibrován, aby bylo odstraněno zkreslení a vliv polohy scény vzhledem k umístění kamery. Je také zjištěn délkový převodní koeficient. Rozpoznání objektů a měření vzdálenosti využívá standardní metody počítačového vidění: adaptivní prahování, momenty, statistické vlastnosti obrazu, Cannyho hranový detektor, Houghovu transformaci,… Navržené algoritmy byly implementovány v jazyce C++ s použitím Intel OpenCV knihovny. Finální dosažené rozlišení při měření je 10 µm na pixel. Výstup algoritmů byl použit k sestavení několika testovacích hrotů.
Vizuální detekce elektronických součástek
Juhas, Miroslav ; Honec, Peter (oponent) ; Janáková, Ilona (vedoucí práce)
Tato práce popisuje použití zpracování obrazu pro přesné měření vzdáleností v automatické výrobě hrotu pro AFM mikroskop. Hlavním cílem je měření vzdáleností mezi jednotlivými díly během výroby. Účelem je získání dat pro automatickou výrobní linku, která má nahradit nepřesnou a neopakovatelnou manuální výrobu. Výrobní proces sestává ze tří technologických kroků. V prvních dvou krocích je přilepen wolframový drát k nosníku. V těchto krocích je, pro správné zarovnaní částí, nutno měřit vzdálenost ve všech třech osách. Ve třetím kroku je odleptán ostrý hrot v roztoku KOH. Musí být dodržena správná vzdálenost mezi hladinou roztoku a nosníkem. K získání obrazu je použita kamera s vysokým rozlišením a makro objektivem. Obraz je poté kalibrován, aby bylo odstraněno zkreslení a vliv polohy scény vzhledem k umístění kamery. Je také zjištěn délkový převodní koeficient. Rozpoznání objektů a měření vzdálenosti využívá standardní metody počítačového vidění: adaptivní prahování, momenty, statistické vlastnosti obrazu, Cannyho hranový detektor, Houghovu transformaci,… Navržené algoritmy byly implementovány v jazyce C++ s použitím Intel OpenCV knihovny. Finální dosažené rozlišení při měření je 10 µm na pixel. Výstup algoritmů byl použit k sestavení několika testovacích hrotů.
Světlem ovládané biomolekuly
Planer, Jakub ; Bartošík, Miroslav (oponent) ; Vácha,, Robert (oponent) ; Kulhánek, Petr (vedoucí práce)
Tato práce je zaměřena na molekulárně dynamické simulace umělého fotocitlivého iontového kanálu a AFM hrotu. Při sestavování modelu iontového kanálu byly použity DFT metody pro reparametrizaci silového pole GAFF popisující přemostěný azobenzen, který sloužil jako světlem ovládaný molekulární přepínač, a pomocí simulací jsme prokázali, že námi vyvinuté parametry vhodně popisují chování sestaveného modelu iontového kanálu v lipidové dvouvrstvě. Dále jsme sestavili model AFM hrotu a pomocí molekulární dynamiky pozorovali vznik vodního menisku mezi hrotem a podložkou z -křemene. Přínosem této práce je soubor nových parametrů opravující silové pole GAFF pro správný popis přemostěného azobenzenu, ověření funkčnosti modelu navrhnutého iontového kanálu a vytvoření funkčního modelu AFM hrotu, na kterém je možno dále studovat vznik vodního menisku.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.