Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Cavitation in microfluidics
Holub, Martin ; Kozák, Jiří (oponent) ; Rudolf, Pavel (vedoucí práce)
Microfluidics has recently gained attention of numerous research groups. Its applications are manifold and could potentially bring about significant advances in several fields including healthcare, battery energy storage and high-performance computing. The thesis “Cavitation in Microfluidics” deals with cavitation at the microscale level. Its relevance to the up-to-date research is emphasized by recent studies which show that various aspects of cavitating flows observed at microscale often differ from their macroscale counterparts. Better understanding of this phenomenon can be directed towards addressing crucial challenges of microfluidics including fluid mixing and pumping. Cell stretching and lysis, chemical catalysis and targeted drug delivery count among other possible applications. The first part of this work deals in turn with fluid mechanics and chemistry fundamentals of cavitation. This is followed by concise overview of its conventional as well as microscale applications. Finally, numerical flow simulations of cavitating flow in two distinct domains are presented together with results analysis and validation. The results include distribution of phases, report on areas of recirculation and influence of changing cavitation number on flow variables. Based on this, an experiment enabling accurate investigation of flow characteristics is proposed. This will enable to draw parallels between the experimental and numerical investigations and allow for evaluation of the suitability of laminar model. This thesis lays foundation for future work on the topic planned at Brno University of Technology, hence recommendations for prospective endeavors are included.
Cavitation in microfluidics
Holub, Martin ; Kozák, Jiří (oponent) ; Rudolf, Pavel (vedoucí práce)
Microfluidics has recently gained attention of numerous research groups. Its applications are manifold and could potentially bring about significant advances in several fields including healthcare, battery energy storage and high-performance computing. The thesis “Cavitation in Microfluidics” deals with cavitation at the microscale level. Its relevance to the up-to-date research is emphasized by recent studies which show that various aspects of cavitating flows observed at microscale often differ from their macroscale counterparts. Better understanding of this phenomenon can be directed towards addressing crucial challenges of microfluidics including fluid mixing and pumping. Cell stretching and lysis, chemical catalysis and targeted drug delivery count among other possible applications. The first part of this work deals in turn with fluid mechanics and chemistry fundamentals of cavitation. This is followed by concise overview of its conventional as well as microscale applications. Finally, numerical flow simulations of cavitating flow in two distinct domains are presented together with results analysis and validation. The results include distribution of phases, report on areas of recirculation and influence of changing cavitation number on flow variables. Based on this, an experiment enabling accurate investigation of flow characteristics is proposed. This will enable to draw parallels between the experimental and numerical investigations and allow for evaluation of the suitability of laminar model. This thesis lays foundation for future work on the topic planned at Brno University of Technology, hence recommendations for prospective endeavors are included.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.