Národní úložiště šedé literatury Nalezeno 23 záznamů.  začátekpředchozí14 - 23  přejít na záznam: Hledání trvalo 0.01 vteřin. 
Vazba paralogů EXO70 na ATG8 a funkční rozdělení rodiny EXO70 dle účasti v autofagii (Arabidopsis thaliana).
Semerádová, Hana ; Kulich, Ivan (vedoucí práce) ; Motyka, Václav (oponent)
Exocyst je komplex složený z osmi podjednotek, který zprostředkovává poutání váčků před jejich splynutím s cílovou membránou. V poslední době přibývájí zjištění, že kromě této funkce hraje exocyst roli i v buněčném procesu zvaném autofagie. U rostlin je počet paralogů některých podjednotek exocystu neobvykle velký. V genomu Arabidopsis thaliana je paralogů podjednotky Exo70 až 23. Předpokládá se, že tyto paralogy získaly během evoluce nové funkce - včetně účasti v autofagii. Použitím dvouhybridního experimentu v kvasince je zde ukázáno, že jedině paralogy Exo70B1 a Exo70B2 interagují s autofagosomálním markerem Atg8. Proximita těchto paralogů a Atg8 in vivo byla potvrzena nezávislou metodou FRET. Je pozoruhodné, že Exo70B2 interaguje s Atg8f silněji než Exo70B1. Exprese Exo70B1-mRUBY pod přirozeným promotorem ukazuje strukturu drobných statických teček. Po opůsobení tunicamycinem, který vyvolává autofagii, je indukován pohyb těchto struktur. Homologní modely terciární struktury paralgů Exo70B1 a Exo70B2 v kombinaci s bioinformatickými predikcemi založenými na výsledcích naznačují místa interakce s Atg8. Nabízí také možné vysvětlení paralogu Exo70B2 jako silnějšího interaktora.
Phenotypic analysis of epidermal cells in Arabidopsis thaliana plants with impaired actin cytoskeleton
Miklánková, Pavlína ; Schwarzerová, Kateřina (vedoucí práce) ; Kulich, Ivan (oponent)
Aktinový cytoskelet se v rostlinách podílí na regulaci mnoha procesů, jako jsou například správná morfogeneze buněk a celého organizmu, pohyb organel, regulace dělení buněk. Jeho dynamika a polymerace je regulována různými komplexy a asociovanými proteiny, mezi které patří i ARP2/3 komplex. Ten vlákna aktinu nukleuje de novo a napomáhá jejich větvení. Tato diplomová práce pojednává o úloze aktinu a ARP2/3 komplexu v rozličných procesech probíhajících v rostlinných buňkách. První část práce je zaměřena na úlohu aktinu v morfogenezi, druhá část se soustřeďuje na úlohu aktinu v endocytóze v pokožkových buňkách. Při výzkumu důležitosti jednotlivých složek cytoskeletu v morfogenezi rostlin vyšlo najevo, že mikrotubuly jsou pro růst rostlin klíčově důležité. Při narušení aktinového cytoskeletu pomocí jedu latrunkulinu B docházelo k nehomogenní odpovědi rostlin. Je známo, že ztráta komplexu ARP2/3 se projevuje u Arabidopsis thaliana specifickou malformací trichomů, které se nazývají distorted trichomy. Bylo zjištěno, že ztráta aktinových izoforem není spojena se závažnou malformací trichomů s tím, že nejvýraznější projev měla ztráta proteinu ACT7. Dále bylo zjištěno, že fenotyp typu distorted nebyl ve wt ani v aktinových mutantních rostlinách indukován ani aplikací latrunkulinu B. Nakonec bylo zjištěno,...
Conventional and Novel Functions of the Exocyst Complex in Plants
Kulich, Ivan ; Žárský, Viktor (vedoucí práce) ; Baluška, František (oponent) ; Hašek, Jiří (oponent)
Exocyst je oktamerický proteínový komplex, konzervovaný naprieč ríšou Eukaryota. Jeho úloha, pôvodne popísaná u kvasiniek, spočíva v pútaní sekretorických váčkov k plazmatickej membráne pred samotným splynutím dvoch membrán. Podjednotky exocystu SEC3 a EXO70 sú považované za tie, ktoré určujú miesto pútania váčku k plazmatickej membráne. Zatiaľ čo genóm kvasinky obsahuje jedinú podjednotku EXO70, u suchozemských rastlín ich nájdeme desiatky (23 u Arabidopsis). Táto práca sa zaoberá úlohou komplexu exocyst v rastlinnej bunke. Jej prvá časť dokladá, že exocyst sa významne podieľa na sekrécii komponentov bunkovej steny, obzvlášť pektínov, ale aj pri hrubnutí bunkovej steny vyvolanom interakciou s patogénom. Ďalšia časť odhaľuje novú, nekonvenčnú úlohu podjednotky EXO70B1 (a na nej založenom subkoplexu) pri autofagickom transporte do vakuoly a vyvoláva tak mnoho otáznikov nad rastlinnou sekretorickou dráhou a jej špecifikami.
Vesicular trafficking into the plant vacuole
Semerádová, Hana ; Kulich, Ivan (vedoucí práce) ; Vosolsobě, Stanislav (oponent)
Vakuola je velmi důležitou organelou v rostlinné buňce, která zajištuje širokou škálu funkcí. Může zaujímat až 90% objemu buňky. Zvážíme-li obrovský objem vakuoly vůči buňce, váčkový transport do této organely představuje většinu transportu v buňce vůbec. Způsob vybírání a třídění proteinů pro transport je v zásadě podobný mezi všemi eukaryoty, avšak rostliny mají určitá specifika. Solubilní proteiny jsou transportovány pomocí VSR (Vacuolar Sorting Receptors). VSR jsou díky své transmembránové orientaci nejen schopné interagovat se solubilním nákladem, ale také ho směrovat do správné organely v rámci buňky. Fůze membrán je pak umožněna Rab GTPasami a komplexem proteinů SNARE. Specifický transport do vakuoly představuje autofagie, 'sebekonzumující' proces, který chrání buňku před různými typy stresu a umožňuje apoptózu.
Funkce apikálního meristému kořene
Benešová, Šárka ; Soukup, Aleš (vedoucí práce) ; Kulich, Ivan (oponent)
Apikální meristém kořene je zdrojem buněk všech trvalých pletiv kořene. Na jeho aktivitě závisí růst a vývoj kořene. Regulace frekvence a orientace dělení buněk a jejich následné diferenciace pak ovlivňuje jak uspořádání a funkci trvalých pletiv v kořeni, tak samotnou aktivitu meristému. Pokud převáží rychlost diferenciace nad proliferací, dříve či později dojde k diferenciaci a vyčerpání meristému a k nevratnému ukončení růstu kořene. Tato práce pojednává o dosavadních poznatcích regulace aktivity apikálního meristému primárního kořene především u modelových rostlin Arabidposis thaliana a Zea mays. Začleňuje tyto poznatky do kontextu postembryonálního vývoje a podává informace o tom, jak a za jakých podmínek dochází k programovanému ukončení aktivity apikálního meristému.
Mechanorecepce u rostlin
Martinek, Jan ; Vosolsobě, Stanislav (vedoucí práce) ; Kulich, Ivan (oponent)
Rostliny jsou sesilní organismy, které si nemohou najít lepší podmínky někde jinde a musí se přizpůsobit prostředí, ve kterém vyrostly. Proto si vyvinuly schopnost vnímat celou řadu environmentálních podnětů, které jim umožňují získat představu o podmínkách v jejich okolí. Jednou ze skupin podnětů, kterým jsou vystaveny, jsou mechanické stimuly spojené například s poryvy větru, kontaktem s překážkami, dotykem herbivorů nebo okolních rostlin. Jistým druhem mechanických stimulů jsou také zvuk a gravitace. Masožravé nebo popínavé rostliny mají vysoce specialisované struktury vytvořené pro vnímání a odpověď na mechanické stimuly, poněkud méně nápadná, ale o to zajímavější a významnější reakce na mechanické podněty existuje i u nespecializovaných rostlin. Tato práce se pokouší shrnout jak je mechanorecepce u rostlin rozšířena a jaké jsou její adaptivní funkce, od vnímání dotyku opory u úponků, přes aktivaci pastí masožravých rostlin až po přizpůsobení na růst na větrném stanovišti a navigaci kořenů skrz překážky v půdě. V další části práce shrnuje současné poznatky o molekulárních procesech provázejících vnímání mechanických podnětů, transdukci, integraci a odpovědi na mechanické působení a v poslední části práce nabízí možné schéma průběhu mechanorecepce od počátečního stimulu až po změnu fenotypu.
Postranní kořeny a kořenové hlízky - podobnosti a rozdíly
Šnajdrová, Tereza ; Soukup, Aleš (vedoucí práce) ; Kulich, Ivan (oponent)
Postranní orgány kořene, kořenové hlízky a postranní kořeny, se zakládají endogenně, a až na výjimky mimo apikální meristém. Tyto orgány mohou být různě modifikovány. Některé rostliny mají, právě díky těmto postranním orgánům, schopnost vstupovat do symbiotických interakcí s jinými organismy. Při vzniku symbiotické, dusík-fixující hlízky se uplatňuje signalizace obou budoucích partnerů, aby byl zajištěn vstup do kořene pouze organismu hostitelsky specifickému k rostlině. Pronikání bakterie Rhizobium či Frankia do kořene se standardně děje přes kořenový vlásek pokožkové buňky, ale není to jediný možný mechanismus vstupu. Zároveň s tímto vstupem se začne vytvářet hlízkové primordium. Pletivo, z něhož se hlízka vytváří, i výsledná podoba hlízky, se liší u různých rostlin. V centrální zóně dospělé hlízky dochází, díky nitrát reduktáze, k fixaci vzdušného dusíku. Tato vlastnost zvýhodňuje rostliny, schopné této hlízkové symbiózy, při kolonizaci půdy, chudé na dusík. Postranní kořeny se zakládají v pericyklu, aktivací malého počtu jeho buněk. Po výstupu z pletiv mateřského kořene dochází k aktivaci meristému bočního kořene. Oba tyto postranní orgány spolu s primárním kořenem tvoří dynamický kořenový systém, regulovaný vnitřními i vnějšími faktory.
Role of exocyst at plant pathogen defense
Sabol, Peter ; Kulich, Ivan (vedoucí práce) ; Šašek, Vladimír Matěj (oponent)
Exocyst je proteínový komplex konzervovaný v kvasinkách, živočíchoch a rastlinách. Sprostredkuje tethering (pútanie) sekretorického vezikulu k plazmatickej membráne v predposlednom kroku exocytózy. Boli naznačené viaceré úlohy exocystu v procesoch bunkovej polarizácie, vrátane polarizovaného rastu peľových vrecúšok a koreňových vláskov, cytokinézy, depozícii pektínu semenného obalu a pravdepodobne autofágie. Jedna z najnovších úloh exocystu zahrňuje tiež odpoveď na bakteriálne a hubové patogény. V tomto ohľade bola ukázaná hlavná úloha pre Exo70B2 a Exo70H1 podjednotky, pričom Exo70H1 je zodpovedný za sprostredkovanie obrany proti bakteriálnym (Pseudomonas syringae) a Exo70B2 za obranu proti bakteriálnym aj hubovým (Blumeria graminis) patogénom. Nedávno sa objavili nové dáta naznačujúce interakciu medzi Exo70B1 a RIN4 a resp. Exo70A1 a NOI6. RPM1 interagujúci proteín 4 (RIN4) je dobre známym negatívnym regulátorom bazálnej aj efektorom spustenej odolnosti. Táto práca ukazuje interakciu medzi NOI6 a viacerými podjednotkami exocystu, potvrdzujúc predchádzajúce dáta. Ukazujem tu, že podjednotky exocystu špecificky interagujú s N koncom NOI6 proteínu a že táto interakcia chýba v kratšej verzii NOI6 mimikujúcej AvrRpt2 štiepenie. Pretože AvrRpt2 je efektorový proteín z bakteriálneho patogéna Pseudomonas...
Secretory pathway of plants in pathogene defence
Sabol, Peter ; Burketová, Lenka (oponent) ; Kulich, Ivan (vedoucí práce)
Rastliny sú sesilné organizmy a preto sa musia vysporiadať so zmenami v ich bezprostrednom okolí. Medzi takéto zmeny patria rôzne abiotické stresy a disturbancie, ale aj biotické interakcie s inými organizmami. Mnohé biotické interakcie zahrňujú poškodzovanie rastlinných buniek hubovým alebo bakteriálnym patogénom. Rastliny navyše nemajú mobilné bunky imunitného systému. Napriek tomu si vyvinuli iné mechanizmy na potlačenie infekcie. Aktivovanie komponentov sekretorickej dráhy pri napadnutí patogénom predstavuje kľúčový krok obrannej odpovede. Hubové patogény, ako napr. skupina powdery mildews, obvykle penetrujú bunkovú stenu rastlinnej bunky a tak získavajú prístup k živinám poskytovaným protoplastom a zároveň dodávajú virulentné faktory. Patogénne baktérie sa naopak množia v extracelulárnych priestoroch. V obidvoch prípadoch však bola pozorovaná spoločná odpoveď, a to tvorba obrannej papily. V nedávnej dobe boli opísané SNARE proteíny zúčastňujúce sa na obrannej odpovedi súvisiacej s tvorbou papily. Konkrétny záujem je venovaný PEN1 a SNAP33 syntaxínom cytoplazmatickej membrány. Akumulácia týchto proteínov v papile bola potvrdená na základe pozorovaní pomocou transmisnej elektrónovej a fluorescenčnej mikroskopie. Zároveň bol navrhnutý mechanizmus akumulácie PEN1 a SNAP33 syntaxínov v papile...
RNA interference u rostlin
Čermák, Vojtěch ; Kulich, Ivan (oponent) ; Fischer, Lukáš (vedoucí práce)
RNA interference je jedním z dějů, které umožňují v buňkách regulovat aktivitu genů. Tento proces je většinou spouštěn přítomností dvoušroubovicové RNA v buňce. Z takovéto RNA mohou být vyštěpovány duplexy malých RNA, většinou o délce 20-25 nukleotidů, za pomoci proteinu zvaného Dicer. Jednovláknové malé RNA uvolněné z těchto duplexů jsou základním kamenem RNA interference a lze je třídit do několika skupin na základě jejich biogeneze. U rostlin se setkáváme s miRNA a siRNA. Malé RNA asociují s proteinem zvaným Argonaut a navádějí jej na základě sekvenční komplementarity k cílové molekule. Argonaut může fungovat buďto sám nebo v komplexu s jinými proteiny. V závislosti na charakteru proteinů účastnících se tohoto děje spouští malé RNA různorodé procesy, které mohou vést ke štěpení mRNA (proces, na který stačí samotný komplex Argonaut a malá RNA), blokování translace nebo modifikacím chromatinu. S RNA interferencí se lze setkat u většiny Eukaryot, kde hraje roli ve vývoji organismů, jejich reakci na stres, úpravách chromatinu a také v obraně proti virům. U rostlin se setkáváme s rozmanitou škálou mechanismů, kterými může RNAi fungovat a kterým začínáme teprve postupně rozumět a doceňovat jejich význam.

Národní úložiště šedé literatury : Nalezeno 23 záznamů.   začátekpředchozí14 - 23  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.