Národní úložiště šedé literatury Nalezeno 4 záznamů.  Hledání trvalo 0.01 vteřin. 
An appropriate method for assessing hydrogel pore sizes by cryo-sem
Adámková, Kateřina ; Trudicová, M. ; Hrubanová, Kamila ; Sedláček, P. ; Krzyžánek, Vladislav
The aim of our work was to examine and describe ultrastructure of the agarose hydrogel and any possible structural concentration dependencies, and to assess the distribution and size of pores of agarose hydrogel in dependence on its concentration. Four concentrations were prepared (0.5 %, 1.0 %, 2.0 % and 4.0 % of dry weight content) and cryo-SEM and turbidimetry methods were executed on wet (original) samples in order to image the ultrastructure and measure the pore sizes within. \nReasonable results were obtained for the wet samples as they were closer to their native state they are usually used for applications in. Cryo-SEM and turbidimetry provided comparable results of pore diameters and allowed to compare pore diameters dependant on the concentrations, moreover, it showed more detailed and realistic structure.
Determination of thickness refinement using STEM detector segments
Skoupý, Radim ; Krzyžánek, Vladislav
Quantitative STEM imaging together with Monte Carlo simulations of electron scattering in solids can bring interesting results about properties of many thin samples. It is possible to determine thickness of a sample, to calculate mass of particles and measure mass per length/area. Appropriate calibration is one of the crucial parts of the method. Even a small error or inaccuracy in detector response to electron beam either blanked or full brings significant error into thickness determination. This problem can be overcome by parallel STEM imaging in more segments of the detector. Comparing more segments gives a possibility to use a signal from different segments for different thicknesses of a sample. Accuracy of individual parts of the detector depends on the captured signal quantity. It is desirable to use such a STEM detector segment that provides the greatest signal change to a unit of thickness. To demonstrate the usage, we used a sample of Latex nanospheres placed on thin carbon lacey film, diameter of the nanospheres was around 600 nm in order to compare the results from different detector segments. Thanks to the known thickness of the sample (calculated from its geometrical shape), it is possible to estimate the optimal acquisition settings and post processing steps with the known and the true state of the sample.
Thickness determination of a cathodoluminescence active nanoparticles by means of Quantitative STEM imaging
Skoupý, Radim ; Krzyžánek, Vladislav
Labeling of specimens by nanoscale probes is common approach of complex biological\nsystems exploration. Namely gold nanoparticles immuno-staining is well established method\nin electron microscopy. However, if more than two label sizes are used, the differentiation of\nindividual nanoparticles becomes difficult.\nThis can be overcome by cathodoluminescence (CL) active particles – nanophosphors where\nlabels recognition is done by wavelength of emitted light. This gives a great opportunity to\nuse advanced multi probe labeling within one sample.\nThere is a huge variety of nanophosphors: green fluorescent protein, quantum dots, ZnO\nnanoparticles, organic molecules, rare earth-doped nanophosphors etc. Therefore, in order\nto choose best type of nanophosphors for a given task, it is important to measure particles\nsize/thickness, as the CL intensity is proportional to the probe volume.
Structure investigation of hydrogels using a cryo-SEM
Adámková, Kateřina ; Hrubanová, Kamila ; Samek, Ota ; Trudičová, M. ; Sedláček, P. ; Krzyžánek, Vladislav
Hydrogels can be characterized as elastic hydrophilic polymer chains connected in network\nwhich are able to swell notably when exposed to aqueous media by absorbing considerable\namounts of water. Besides being a constituent of living organisms, nowadays, there are\nvarious fields hydrated polymers (e.g. polyvinyl alcohol, collagen, and starch) can be utilized\n– in both biological and non-biological form. Classic examples of such applications are\nhuman health and cosmetics (contact lenses, wound healing dressings and artificial\nreplacement tissues – skin, arterial grafts, cornea and spinal disc replacement), pharmacy\n(drug delivery systems), bioengineering, food industry, agriculture etc. Also, hydrogels\ncan reversibly change their shape when being exposed to a temperature change.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.