Národní úložiště šedé literatury Nalezeno 10 záznamů.  Hledání trvalo 0.01 vteřin. 
Experimental research of heterogeneous nuclei in superheated steam
Bartoš, Ondřej ; Kolovratník, M. ; Šmíd, Bohuslav ; Hrubý, Jan
A mobile steam expansion chamber has been developed to investigate experimentally homogeneous and heterogeneous nucleation processes in steam, both in the laboratory and at power plants using the steam withdrawn from the steam turbine. The purpose of the device is to provide new insight into the physics of nonequilibrium wet steam formation, which is one of the factors limiting the efficiency and reliability of steam turbines. The expanded steam or a mixture of steam with a non-condensable gas rapidly expands in the expansion chamber. Due to adiabatic cooling, the temperature drops below the dew point of the steam at a given pressure. When reaching a sufficiently high supersaturation, droplets are nucleated. By tuning the supersaturation in the so-called nucleation pulse, particles of various size ranges can be activated. This fact is used in the present study to measure the aerosol particles present in the air. Homogeneous nucleation was negligible in this case. The experiment demonstrates the functionality of the device, data acquisition system and data evaluation methods.
Molecular Simulations of the Vapor–Liquid Phase Interfaces of Pure Water Modeled with the SPC/E and the TIP4P/2005 Molecular Models
Vinš, Václav ; Celný, David ; Planková, Barbora ; Němec, Tomáš ; Duška, Michal ; Hrubý, Jan
In our previous study [Planková et al., EPJWeb. Conf. 92, 02071 (2015)], several molecular simulations of vapor-liquid phase interfaces for pure water were performed using the DL POLY Classic software. The TIP4P/2005 molecular model was successfully used for the modeling of the density profile and the thickness of phase interfaces together with the temperature dependence of the surface tension. In the current study, the extended simple point charge (SPC/E) model for water together with TIP4P/2005 were employed for the investigation of vapor-liquid phase interfaces over a wide temperature range from 250 K to 600 K. Results of the new simulations are in a good agreement with most of the literature data. TIP4P/2005 provides better results for the saturated liquid density with its maximum close to 275 K, while SPC/E predicts slightly better saturated vapor density. Both models give qualitatively correct representation for the surface tension of water.
Mathematical modeling of planar and spherical vapor–liquid phase interfaces for multicomponent fluids
Celný, David ; Vinš, Václav ; Planková, Barbora ; Hrubý, Jan
Methods for accurate modeling of phase interfaces are important for understanding natural processes and application in technology. In particular, prediction of the non-equilibrium phase transition requires the knowledge of the strongly curved phase interfaces of microscopic droplets. In our work, we focus on the spherical vapor–liquid interfaces for binary mixtures. We developed a computational method able to determine the density and concentration profiles. The fundamentals of our approach lie in the gradient theory, allowing to transcribe the functional formulation into a system of Euler-Langrange equations. System is then modified into a shape suitable for iterative computation. For this task, we employ the Newton-Raphson and the shooting methods ensuring a good convergence speed. For the thermodynamic properties, the PC–SAFT EoS is used. We determined the density and concentration profiles of the binary mixture C O 2 & C 9 H 20 for spherical phase interfaces at various saturation factors.
Callibration of capillaries for density measurement of supercooled water
Peukert, Pavel ; Duška, Michal ; Hykl, Jiří ; Sladký, Petr ; Nikl, Zbyněk ; Hrubý, Jan
Density of supercooled water at elevated pressure is interesting because of the strong anomalies which can be explained by existence of a liquid-liquid critical point in the region of supercooled water. In order to provide accurate data for density at these conditions a procedure was developed to calibrate the course of the inner cross section of a capillary along its length. Further, the image analysis for the sub-pixel evaluation of meniscus postion is described.
Molecular simulation of water vapor–liquid phase interfaces using TIP4P/2005 model
Planková, Barbora ; Vinš, Václav ; Hrubý, Jan ; Duška, Michal ; Němec, Tomáš ; Celný, D.
Molecular dynamics simulations for water were run using the TIP4P/2005 model for temperatures ranging from 250 K to 600 K. The density profile, the surface tension and the thickness of the phase interface were calculated as preliminary results. The surface tension values matched nicely with the IAPWS correlation over wide range of temperatures. As a partial result, DL POLY Classis was successfully used for tests of the new computing cluster in our institute.
Molecular dynamics simulation of vapour-liquid nucleation of water with constant energy
Duška, Michal ; Němec, Tomáš ; Hrubý, Jan ; Vinš, Václav ; Planková, Barbora
The paper describes molecular dynamics study of nucleation of water in NVE ensemble. The numerical simulation was performed with the DL_POLY. The metastable steam consisting of 10976 water molecules with TIP4P/2005 potential was driven on the desired energy level by a simulation at constant temperature, and then the nucleation at constant energy was studied for several tens of nanoseconds, which was sufficient for clusters to evolve at hundred molecules size. The results were compared with the previously published results and the classical nucleation theory predictions.
Analytical description of thermodynamic properties of steam, water and the phase interface for use in CFD
Hrubý, Jan ; Duška, Michal
We provide a complete set of equations describing the properties of supersaturated steam, the condensate (liquid phase) and the phase interface. The equations are designed in a form suitable for application in computational fluid dynamics (CFD). A special feature of the present treatment is that we consider the energetic effect of the phase interface in the energy balance.
Comparison of heat transfer in straight and corrugated minichannels with two-phase flow
Peukert, P. ; Hrubý, Jan
Measurements of heat transfer rates performed with an experimental condensation heat exchanger are reported for a corrugated minichannel tube and for a straight minichannel tube. The two cases were compared at same flow regimes. The corrugation appears advantageous for relatively low steam pressures and flow rates where much higher heat transfer rates were observed close to the steam entrance, thus allowing shortening the heat exchanger with the associated advantages of costs lowering and smaller built-up space. At high steam pressures and high flow rates both tubes performed similarly.
Phase equilibria of carbon dioxide and methane gas-hydrates predicted with the modified analytical S-L-V equation of state
Vinš, Václav ; Jäger, A. ; Hrubý, Jan ; Span, R.
Gas-hydrates (clathrates) are non-stoichiometric crystallized solutions of gas molecules in the metastable water lattice. Two or more components are associated without ordinary chemical union but through complete enclosure of gas molecules in a framework of water molecules linked together by hydrogen bonds. The clathrates are important in the following applications: the pipeline blockage in natural gas industry, potential energy source in the form of natural hydrates present in ocean bottom, and the CO2 separation and storage. In this study, we have modified an analytical solid-liquid-vapor equation of state (EoS) [A. Yokozeki, Fluid Phase Equil. 222–223 (2004)] to improve its ability for modeling the phase equilibria of clathrates. The EoS can predict the formation conditions for CO2- and CH4-hydrates. It will be used as an initial estimate for a more complicated hydrate model based on the fundamental EoSs for fluid phases.
A computationally efficient and accurate numerical representation of thermodynamic properties of steam condensing steam flow in steam turbines
Hrubý, Jan
Mathematical modeling of the non-equilibrium condensing transonic steam flow in the complex 3D geometry of a steam turbine is a demanding problem both concerning the physical concepts and the required computational power. Available accurate formulations of steam properties IAPWS-95 and IAPWS-IF97 require much computation time. For this reason, the modelers often accept the unrealistic ideal-gas behavior. Here we present a computation scheme based on a piecewise, thermodynamically consistent representation of the IAPWS-95 formulation. Density and internal energy are chosen as independent variables to avoid variable transformations and iterations. On the contrary to the previous Tabular Taylor Series Expansion Method, the pressure and temperature are continuous functions of the independent variables, which is a desirable property for the solution of the differential equations of the mass, energy, and momentum conservation for both phases.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.